You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
6.3 KiB
176 lines
6.3 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/sequence_ops/sequence_unpad_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class SequenceUnpadOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of SequenceUnpadOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Length"),
|
|
"Input(Length) of SequenceUnpadOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of SequenceUnpadOp should not be null.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
PADDLE_ENFORCE_GE(x_dims.size(), 2,
|
|
"The rank of Input(X) can't be less than 2.");
|
|
|
|
auto len_dims = ctx->GetInputDim("Length");
|
|
PADDLE_ENFORCE(len_dims.size() == 2 && len_dims[1] == 1,
|
|
"The shape of Input(Length) should be [batch_size, 1].");
|
|
PADDLE_ENFORCE(
|
|
len_dims[0] == x_dims[0],
|
|
"Input(X) and Input(Length) should have the same first dimension.");
|
|
|
|
int64_t out_dim_0 = -1;
|
|
if (ctx->IsRuntime()) {
|
|
out_dim_0 = x_dims[0] * x_dims[1];
|
|
}
|
|
|
|
std::vector<int64_t> out_dims_vec{out_dim_0};
|
|
if (x_dims.size() == 2) {
|
|
out_dims_vec.push_back(1);
|
|
} else {
|
|
for (int i = 2; i < x_dims.size(); ++i) {
|
|
out_dims_vec.push_back(x_dims[i]);
|
|
}
|
|
}
|
|
ctx->SetOutputDim("Out", framework::make_ddim(out_dims_vec));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("X"));
|
|
return framework::OpKernelType(data_type, ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class SequenceUnpadOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(LoDTensor, default LoDTensor<float>) Input tensor which "
|
|
"contains the padded sequences with equal length.");
|
|
AddInput("Length",
|
|
"(LoDTensor) The input tensor which specifies the actual ength of "
|
|
"sequences after unpadding.");
|
|
AddOutput(
|
|
"Out",
|
|
"(LoDTensor) The output tensor which contains unpadded sequences.");
|
|
AddComment(R"DOC(
|
|
Sequence Unpad Operator
|
|
|
|
This operator removes the padding data in the input sequences and convert
|
|
them into sequences with actual length as output, identitied by lod
|
|
information.
|
|
|
|
Example:
|
|
|
|
Given input tensor Input(X):
|
|
X.data = [[ 1.0, 2.0, 3.0, 4.0, 5.0],
|
|
[ 6.0, 7.0, 8.0, 9.0, 10.0],
|
|
[11.0, 12.0, 13.0, 14.0, 15.0]],
|
|
`
|
|
in which there are 3 sequences padded to length 5, and the acutal length
|
|
specified by Input(Length):
|
|
|
|
Length.data = [[2], [3], [4]],
|
|
|
|
after unpadding, Output(Out) will be:
|
|
|
|
Out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
|
|
Out.lod = [[0, 2, 5, 9]]
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class SequenceUnpadGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of SequenceUnpadGradOp should not be null.");
|
|
PADDLE_ENFORCE(
|
|
ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) of SequenceUnpadGradOp should not be null.");
|
|
|
|
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto data_type = framework::GetDataTypeOfVar(
|
|
ctx.InputVar(framework::GradVarName("Out")));
|
|
return framework::OpKernelType(data_type, ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class SequenceUnpadGradOpDescMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
|
|
op->SetType("sequence_unpad_grad");
|
|
op->SetAttrMap(Attrs());
|
|
op->SetInput("X", Input("X"));
|
|
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
|
return op;
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
|
|
SequenceUnpadGradOpNoNeedBufferVarsInference, "X");
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(sequence_unpad, ops::SequenceUnpadOp,
|
|
ops::SequenceUnpadOpMaker, ops::SequenceUnpadGradOpDescMaker);
|
|
REGISTER_OPERATOR(sequence_unpad_grad, ops::SequenceUnpadGradOp,
|
|
ops::SequenceUnpadGradOpNoNeedBufferVarsInference);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
sequence_unpad,
|
|
ops::SequenceUnpadOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SequenceUnpadOpKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::SequenceUnpadOpKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::SequenceUnpadOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
sequence_unpad_grad,
|
|
ops::SequenceUnpadGradOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SequenceUnpadGradOpKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::SequenceUnpadGradOpKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::SequenceUnpadGradOpKernel<paddle::platform::CPUDeviceContext,
|
|
int64_t>);
|