You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
120 lines
4.2 KiB
120 lines
4.2 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import os
|
|
|
|
import dist_ctr_reader
|
|
from test_dist_base import TestDistRunnerBase, runtime_main
|
|
|
|
IS_SPARSE = True
|
|
os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
|
|
|
|
# Fix seed for test
|
|
fluid.default_startup_program().random_seed = 1
|
|
fluid.default_main_program().random_seed = 1
|
|
|
|
|
|
class TestDistCTR2x2(TestDistRunnerBase):
|
|
def get_model(self, batch_size=2):
|
|
|
|
dnn_input_dim, lr_input_dim = dist_ctr_reader.load_data_meta()
|
|
""" network definition """
|
|
dnn_data = fluid.layers.data(
|
|
name="dnn_data",
|
|
shape=[-1, 1],
|
|
dtype="int64",
|
|
lod_level=1,
|
|
append_batch_size=False)
|
|
lr_data = fluid.layers.data(
|
|
name="lr_data",
|
|
shape=[-1, 1],
|
|
dtype="int64",
|
|
lod_level=1,
|
|
append_batch_size=False)
|
|
label = fluid.layers.data(
|
|
name="click",
|
|
shape=[-1, 1],
|
|
dtype="int64",
|
|
lod_level=0,
|
|
append_batch_size=False)
|
|
|
|
# build dnn model
|
|
dnn_layer_dims = [128, 64, 32, 1]
|
|
dnn_embedding = fluid.layers.embedding(
|
|
is_distributed=False,
|
|
input=dnn_data,
|
|
size=[dnn_input_dim, dnn_layer_dims[0]],
|
|
param_attr=fluid.ParamAttr(
|
|
name="deep_embedding",
|
|
initializer=fluid.initializer.Constant(value=0.01)),
|
|
is_sparse=IS_SPARSE)
|
|
dnn_pool = fluid.layers.sequence_pool(
|
|
input=dnn_embedding, pool_type="sum")
|
|
dnn_out = dnn_pool
|
|
for i, dim in enumerate(dnn_layer_dims[1:]):
|
|
fc = fluid.layers.fc(
|
|
input=dnn_out,
|
|
size=dim,
|
|
act="relu",
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(value=0.01)),
|
|
name='dnn-fc-%d' % i)
|
|
dnn_out = fc
|
|
|
|
# build lr model
|
|
lr_embbding = fluid.layers.embedding(
|
|
is_distributed=False,
|
|
input=lr_data,
|
|
size=[lr_input_dim, 1],
|
|
param_attr=fluid.ParamAttr(
|
|
name="wide_embedding",
|
|
initializer=fluid.initializer.Constant(value=0.01)),
|
|
is_sparse=IS_SPARSE)
|
|
lr_pool = fluid.layers.sequence_pool(input=lr_embbding, pool_type="sum")
|
|
|
|
merge_layer = fluid.layers.concat(input=[dnn_out, lr_pool], axis=1)
|
|
|
|
predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax')
|
|
acc = fluid.layers.accuracy(input=predict, label=label)
|
|
auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
|
|
label=label)
|
|
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
inference_program = paddle.fluid.default_main_program().clone()
|
|
|
|
regularization = None
|
|
use_l2_decay = bool(os.getenv('USE_L2_DECAY', 0))
|
|
if use_l2_decay:
|
|
regularization = fluid.regularizer.L2DecayRegularizer(
|
|
regularization_coeff=1e-1)
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.0001,
|
|
regularization=regularization)
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
dataset = dist_ctr_reader.Dataset()
|
|
train_reader = paddle.batch(dataset.train(), batch_size=batch_size)
|
|
test_reader = paddle.batch(dataset.test(), batch_size=batch_size)
|
|
|
|
return inference_program, avg_cost, train_reader, test_reader, None, predict
|
|
|
|
|
|
if __name__ == "__main__":
|
|
runtime_main(TestDistCTR2x2)
|