You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
131 lines
5.6 KiB
131 lines
5.6 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import os
|
|
import tempfile
|
|
import numpy as np
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.profiler as profiler
|
|
import paddle.fluid.layers as layers
|
|
import paddle.fluid.core as core
|
|
import paddle.fluid.proto.profiler.profiler_pb2 as profiler_pb2
|
|
|
|
|
|
class TestProfiler(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
os.environ['CPU_NUM'] = str(4)
|
|
|
|
def net_profiler(self, state, use_parallel_executor=False):
|
|
profile_path = os.path.join(tempfile.gettempdir(), "profile")
|
|
open(profile_path, "w").write("")
|
|
startup_program = fluid.Program()
|
|
main_program = fluid.Program()
|
|
|
|
with fluid.program_guard(main_program, startup_program):
|
|
image = fluid.layers.data(name='x', shape=[784], dtype='float32')
|
|
hidden1 = fluid.layers.fc(input=image, size=64, act='relu')
|
|
i = layers.zeros(shape=[1], dtype='int64')
|
|
counter = fluid.layers.zeros(
|
|
shape=[1], dtype='int64', force_cpu=True)
|
|
until = layers.fill_constant([1], dtype='int64', value=10)
|
|
data_arr = layers.array_write(hidden1, i)
|
|
cond = fluid.layers.less_than(x=counter, y=until)
|
|
while_op = fluid.layers.While(cond=cond)
|
|
with while_op.block():
|
|
hidden_n = fluid.layers.fc(input=hidden1, size=64, act='relu')
|
|
layers.array_write(hidden_n, i, data_arr)
|
|
fluid.layers.increment(x=counter, value=1, in_place=True)
|
|
layers.less_than(x=counter, y=until, cond=cond)
|
|
|
|
hidden_n = layers.array_read(data_arr, i)
|
|
hidden2 = fluid.layers.fc(input=hidden_n, size=64, act='relu')
|
|
predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
|
|
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
|
|
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
|
avg_cost = fluid.layers.mean(cost)
|
|
batch_size = fluid.layers.create_tensor(dtype='int64')
|
|
batch_acc = fluid.layers.accuracy(
|
|
input=predict, label=label, total=batch_size)
|
|
|
|
optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
|
|
opts = optimizer.minimize(avg_cost, startup_program=startup_program)
|
|
|
|
place = fluid.CPUPlace() if state == 'CPU' else fluid.CUDAPlace(0)
|
|
exe = fluid.Executor(place)
|
|
exe.run(startup_program)
|
|
if use_parallel_executor:
|
|
pe = fluid.ParallelExecutor(
|
|
state != 'CPU',
|
|
loss_name=avg_cost.name,
|
|
main_program=main_program)
|
|
|
|
pass_acc_calculator = fluid.average.WeightedAverage()
|
|
with profiler.profiler(state, 'total', profile_path) as prof:
|
|
for iter in range(10):
|
|
if iter == 2:
|
|
profiler.reset_profiler()
|
|
x = np.random.random((32, 784)).astype("float32")
|
|
y = np.random.randint(0, 10, (32, 1)).astype("int64")
|
|
|
|
if use_parallel_executor:
|
|
pe.run(feed={'x': x, 'y': y}, fetch_list=[avg_cost.name])
|
|
continue
|
|
outs = exe.run(main_program,
|
|
feed={'x': x,
|
|
'y': y},
|
|
fetch_list=[avg_cost, batch_acc, batch_size])
|
|
acc = np.array(outs[1])
|
|
b_size = np.array(outs[2])
|
|
pass_acc_calculator.add(value=acc, weight=b_size)
|
|
pass_acc = pass_acc_calculator.eval()
|
|
data = open(profile_path, 'rb').read()
|
|
self.assertGreater(len(data), 0)
|
|
profile_pb = profiler_pb2.Profile()
|
|
profile_pb.ParseFromString(data)
|
|
self.assertGreater(len(profile_pb.events), 0)
|
|
for event in profile_pb.events:
|
|
if event.type == profiler_pb2.Event.GPUKernel:
|
|
if not event.detail_info and not event.name.startswith("MEM"):
|
|
raise Exception(
|
|
"Kernel %s missing event. Has this kernel been recorded by RecordEvent?"
|
|
% event.name)
|
|
elif event.type == profiler_pb2.Event.CPU and (
|
|
event.name.startswith("Driver API") or
|
|
event.name.startswith("Runtime API")):
|
|
print("Warning: unregister", event.name)
|
|
|
|
def test_cpu_profiler(self):
|
|
self.net_profiler('CPU')
|
|
self.net_profiler('CPU', use_parallel_executor=True)
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"profiler is enabled only with GPU")
|
|
def test_cuda_profiler(self):
|
|
self.net_profiler('GPU')
|
|
self.net_profiler('GPU', use_parallel_executor=True)
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"profiler is enabled only with GPU")
|
|
def test_all_profiler(self):
|
|
self.net_profiler('All')
|
|
self.net_profiler('All', use_parallel_executor=True)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|