You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_tree_conv_op.py

121 lines
4.2 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from op_test import OpTest
def collect_node_patch(og, max_depth):
"""
The naive method to construct patches
:param og: original graph
:param max_depth: the depth of convolution filters
:return: convolution patches
"""
def gen(node, max_depth):
collected = [(node, 1, 1, 0, max_depth)]
def recurse_helper(node, depth):
if depth > max_depth:
return
l = len(og[node])
for idx, c in enumerate(og[node], 1):
if depth + 1 < max_depth:
collected.append((c, idx, l, depth + 1, max_depth))
recurse_helper(c, depth + 1)
recurse_helper(node, 0)
return collected
res = []
for u in range(1, len(og)):
lis = gen(u, max_depth)
if len(lis) > 0:
res.append(lis)
return res
class TestTreeConvOp(OpTest):
def setUp(self):
self.n = 17
self.fea_size = 3
self.output_size = 1
self.max_depth = 2
self.batch_size = 1
self.num_filters = 1
adj_array = [
1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 2, 7, 2, 8, 4, 9, 4, 10, 5, 11, 6, 12,
6, 13, 9, 14, 9, 15, 9, 16, 9, 17
]
adj = np.array(adj_array).reshape((1, self.n - 1, 2)).astype('int32')
adj = np.tile(adj, (self.batch_size, 1, 1))
self.op_type = 'tree_conv'
vectors = np.random.random(
(self.batch_size, self.n, self.fea_size)).astype('float32')
self.inputs = {
'EdgeSet': adj,
'NodesVector': vectors,
'Filter': np.random.random((self.fea_size, 3, self.output_size,
self.num_filters)).astype('float32')
}
self.attrs = {'max_depth': self.max_depth}
vectors = []
for i in range(self.batch_size):
vector = self.get_output_naive(i)
vectors.append(vector)
self.outputs = {'Out': np.array(vectors).astype('float32'), }
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(
['NodesVector', 'Filter'], 'Out', max_relative_error=0.5)
def get_output_naive(self, batch_id):
og = [[] for i in range(1, self.n + 2)]
st = np.array(self.inputs['EdgeSet'][batch_id]).tolist()
for e in st:
og[e[0]].append(e[1])
patches = collect_node_patch(og, self.max_depth)
W = np.array(self.inputs['Filter']).astype('float32')
W = np.transpose(W, axes=[1, 0, 2, 3])
vec = []
for i, patch in enumerate(patches, 1):
result = np.zeros((1, W.shape[2], W.shape[3]))
for v in patch:
eta_t = float(v[4] - v[3]) / float(v[4])
eta_l = (1.0 - eta_t) * (0.5 if v[2] == 1 else
float(v[1] - 1.0) / float(v[2] - 1.0))
eta_r = (1.0 - eta_t) * (1.0 - eta_l)
x = self.inputs['NodesVector'][batch_id][v[0] - 1]
eta = np.array([eta_l, eta_r, eta_t]).reshape(
(3, 1)).astype('float32')
Wconvi = np.tensordot(eta, W, axes=([0], [0]))
x = np.array(x).reshape((1, 1, self.fea_size))
res = np.tensordot(x, Wconvi, axes=2)
result = result + res
vec.append(result)
vec = np.concatenate(vec, axis=0)
vec = np.concatenate(
[
vec, np.zeros(
(self.n - vec.shape[0], W.shape[2], W.shape[3]),
dtype='float32')
],
axis=0)
return vec