You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/beam_search_decode_op_test.cc

130 lines
4.7 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/beam_search_decode_op.h"
#include "gtest/gtest.h"
using CPUPlace = paddle::platform::CPUPlace;
using LoD = paddle::framework::LoD;
using LoDTensor = paddle::framework::LoDTensor;
using LoDTensorArray = paddle::framework::LoDTensorArray;
template <typename T>
using BeamSearchDecoder = paddle::operators::BeamSearchDecoder<T>;
template <typename T>
using Sentence = paddle::operators::Sentence<T>;
template <typename T>
using SentenceVector = paddle::operators::SentenceVector<T>;
namespace paddle {
namespace test {
void GenerateExample(const std::vector<size_t>& level_0,
const std::vector<size_t>& level_1,
const std::vector<int>& data, LoDTensorArray* ids,
LoDTensorArray* scores) {
PADDLE_ENFORCE_EQ(level_0.back(), level_1.size() - 1,
"source level is used to describe candidate set");
PADDLE_ENFORCE_EQ(level_1.back(), data.size(),
"the lowest level is used to describe data"
", so it's last element should be data length");
CPUPlace place;
LoD lod;
lod.push_back(level_0);
lod.push_back(level_1);
// Ids
LoDTensor tensor_id;
tensor_id.set_lod(lod);
tensor_id.Resize({static_cast<int64_t>(data.size())});
// malloc memory
int64_t* id_ptr = tensor_id.mutable_data<int64_t>(place);
for (size_t i = 0; i < data.size(); ++i) {
id_ptr[i] = static_cast<int64_t>(data.at(i));
}
// Scores
LoDTensor tensor_score;
tensor_score.set_lod(lod);
tensor_score.Resize({static_cast<int64_t>(data.size())});
// malloc memory
float* score_ptr = tensor_score.mutable_data<float>(place);
for (size_t i = 0; i < data.size(); ++i) {
score_ptr[i] = static_cast<float>(data.at(i));
}
ids->push_back(tensor_id);
scores->push_back(tensor_score);
}
} // namespace test
} // namespace paddle
TEST(BeamSearchDecodeOp, Backtrace) {
CPUPlace place;
// Construct sample data with 5 steps and 2 source sentences
// beam_size = 2, start_id = 0, end_id = 1
LoDTensorArray ids;
LoDTensorArray scores;
paddle::test::GenerateExample(
std::vector<size_t>{0, 1, 2}, std::vector<size_t>{0, 1, 2},
std::vector<int>{0, 0}, &ids, &scores); // start with start_id
paddle::test::GenerateExample(std::vector<size_t>{0, 1, 2},
std::vector<size_t>{0, 2, 4},
std::vector<int>{2, 3, 4, 5}, &ids, &scores);
paddle::test::GenerateExample(std::vector<size_t>{0, 2, 4},
std::vector<size_t>{0, 2, 2, 4, 4},
std::vector<int>{3, 1, 5, 4}, &ids, &scores);
paddle::test::GenerateExample(std::vector<size_t>{0, 2, 4},
std::vector<size_t>{0, 1, 2, 3, 4},
std::vector<int>{1, 1, 3, 5}, &ids, &scores);
paddle::test::GenerateExample(
std::vector<size_t>{0, 2, 4},
std::vector<size_t>{0, 0, 0, 2,
2}, // the branchs of the first source sentence
// are pruned since finished
std::vector<int>{5, 1},
&ids, &scores);
ASSERT_EQ(ids.size(), 5UL);
ASSERT_EQ(scores.size(), 5UL);
BeamSearchDecoder<float> helper(2, 1); // beam_size = 2, end_id = 1
LoDTensor id_tensor;
LoDTensor score_tensor;
helper.Backtrace(ids, scores, &id_tensor, &score_tensor);
LoD lod = id_tensor.lod();
std::vector<size_t> expect_source_lod = {0, 2, 4};
EXPECT_EQ(lod[0], expect_source_lod);
std::vector<size_t> expect_sentence_lod = {0, 4, 7, 12, 17};
EXPECT_EQ(lod[1], expect_sentence_lod);
std::vector<int> expect_data = {0, 2, 3, 1, 0, 2, 1, 0, 4,
5, 3, 5, 0, 4, 5, 3, 1};
ASSERT_EQ(id_tensor.dims()[0], static_cast<int64_t>(expect_data.size()));
for (size_t i = 0; i < expect_data.size(); ++i) {
ASSERT_EQ(id_tensor.data<int64_t>()[i],
static_cast<int64_t>(expect_data[i]));
}
for (int64_t i = 0; i < id_tensor.dims()[0]; ++i) {
ASSERT_EQ(score_tensor.data<float>()[i],
static_cast<float>(id_tensor.data<int64_t>()[i]));
}
}