You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
412 lines
16 KiB
412 lines
16 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/cross_entropy_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class CrossEntropyOpBase : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) should be not null.");
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("Label"), true,
|
|
"Input(Label) should be not null.");
|
|
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Y"), true,
|
|
"Output(Y) should be not null.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto label_dims = ctx->GetInputDim("Label");
|
|
int rank = x_dims.size();
|
|
|
|
bool contain_unknown_dim = framework::contain_unknown_dim(x_dims) ||
|
|
framework::contain_unknown_dim(label_dims);
|
|
bool check = ctx->IsRuntime() || !contain_unknown_dim;
|
|
|
|
if (check) {
|
|
PADDLE_ENFORCE_EQ(
|
|
framework::slice_ddim(x_dims, 0, rank - 1),
|
|
framework::slice_ddim(label_dims, 0, rank - 1),
|
|
"ShapeError: Input(X) and Input(Label) shall have the same shape "
|
|
"except the last dimension. But received: the shape of Input(X) is "
|
|
"[%s],"
|
|
"the shape of Input(Label) is [%s].",
|
|
x_dims, label_dims);
|
|
}
|
|
|
|
if (IsSoftLabel(ctx)) {
|
|
PADDLE_ENFORCE_EQ(
|
|
rank, label_dims.size(),
|
|
"ShapeError: If Attr(soft_label) == true, Input(X) and Input(Label) "
|
|
"shall have the same dimensions. But received: the dimensions of "
|
|
"Input(X) is [%d],"
|
|
"the shape of Input(X) is [%s], the dimensions of Input(Label) is "
|
|
"[%d], the shape of"
|
|
"Input(Label) is [%s]",
|
|
rank, x_dims, label_dims.size(), label_dims);
|
|
|
|
if (check) {
|
|
PADDLE_ENFORCE_EQ(
|
|
x_dims[rank - 1], label_dims[rank - 1],
|
|
"ShapeError: If Attr(soft_label) == true, the last dimension of "
|
|
"Input(X) and Input(Label) should be equal. But received: the"
|
|
"last dimension of Input(X) is [%d], the shape of Input(X) is [%s],"
|
|
"the last dimension of Input(Label) is [%d], the shape of "
|
|
"Input(Label)"
|
|
"is [%s], the last dimension is [%d].",
|
|
x_dims[rank - 1], x_dims, label_dims[rank - 1], label_dims,
|
|
rank - 1);
|
|
}
|
|
} else {
|
|
if (rank == label_dims.size()) {
|
|
PADDLE_ENFORCE_EQ(
|
|
label_dims[rank - 1], 1UL,
|
|
"ShapeError: the last dimension of Input(Label) should be 1."
|
|
"But received: the last dimension of Input(Label) is [%d],"
|
|
"the last dimension is [%d]",
|
|
label_dims[rank - 1], rank - 1);
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(rank, label_dims.size() + 1,
|
|
"ShapeError: The rank of Input(X) should be equal to "
|
|
"Input(Label) plus 1."
|
|
"But received: The dimension of Input(X) is [%d], "
|
|
"the shape of Input(X) is [%s],"
|
|
"the dimension of Input(Label) is [%d], the shape of "
|
|
"Input(Label) is [%s]",
|
|
rank, x_dims, label_dims.size(), label_dims);
|
|
}
|
|
}
|
|
|
|
auto y_dims = label_dims;
|
|
if (rank == label_dims.size()) {
|
|
y_dims[rank - 1] = 1;
|
|
}
|
|
ctx->SetOutputDim("Y", y_dims);
|
|
ctx->ShareLoD("X", /*->*/ "Y");
|
|
}
|
|
|
|
protected:
|
|
// Explicitly set that the data type of computation kernel of cross_entropy
|
|
// is determined by its input "X".
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
ctx.device_context());
|
|
}
|
|
|
|
virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
|
|
return ctx->Attrs().Get<bool>("soft_label");
|
|
}
|
|
};
|
|
|
|
class CrossEntropyGradientOpBase : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("Label"), true,
|
|
"Input(Label) should be not null.");
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Y")), true,
|
|
"Input(Y@GRAD) shoudl be not null.");
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
|
|
"Output(X@GRAD) should be not null.");
|
|
|
|
auto x_dims = GetXDim(ctx);
|
|
auto label_dims = ctx->GetInputDim("Label");
|
|
auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
|
|
int rank = x_dims.size();
|
|
PADDLE_ENFORCE_EQ(dy_dims.size(), label_dims.size(),
|
|
"Input(Y@Grad) and Input(Y) should have the same rank.");
|
|
|
|
bool check = true;
|
|
if ((!ctx->IsRuntime()) &&
|
|
(framework::product(x_dims) <= 0 || framework::product(dy_dims) <= 0)) {
|
|
check = false;
|
|
}
|
|
|
|
if (check) {
|
|
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
|
|
framework::slice_ddim(dy_dims, 0, rank - 1),
|
|
"The Input(X) and Input(Y@Grad) should have the same "
|
|
"shape except the last dimension.");
|
|
}
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
|
|
ctx->ShareLoD(VarNameWithXLoD(), framework::GradVarName("X"));
|
|
}
|
|
|
|
protected:
|
|
// Explicitly set that the data type of computation kernel of cross_entropy
|
|
// is determined by its input "X".
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Y")),
|
|
ctx.device_context());
|
|
}
|
|
|
|
virtual framework::DDim GetXDim(framework::InferShapeContext* ctx) const {
|
|
return ctx->GetInputDim("X");
|
|
}
|
|
|
|
virtual const char* VarNameWithXLoD() const { return "X"; }
|
|
|
|
virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
|
|
return ctx->Attrs().Get<bool>("soft_label");
|
|
}
|
|
};
|
|
|
|
class CrossEntropyOpInferVarType
|
|
: public framework::PassInDtypeAndVarTypeToOutput {
|
|
protected:
|
|
std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
|
|
const override {
|
|
return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Y"}};
|
|
}
|
|
};
|
|
|
|
class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(Tensor, default Tensor<float>), a tensor whose last dimension "
|
|
"size is equal to the number of classes. This input is a "
|
|
"probability computed by the previous operator, which is almost "
|
|
"always the result of a softmax operator.");
|
|
AddInput(
|
|
"Label",
|
|
"(Tensor), the tensor which represents the ground truth. It has the "
|
|
"same shape with 'X' except the last dimension. When soft_label is set "
|
|
"to false, the last dimension size is 1; when soft_label is set to "
|
|
"true, the last dimension size is equal to the number of classes.");
|
|
AddOutput("Y",
|
|
"(Tensor, default Tensor<float>), a tensor whose shape is same "
|
|
"with 'X' except that the last dimension size is 1. It "
|
|
"represents the cross entropy loss.");
|
|
AddAttr<bool>("soft_label",
|
|
"(bool, default false), a flag indicating whether to "
|
|
"interpretant the given labels as soft labels.")
|
|
.SetDefault(false);
|
|
AddAttr<int>("ignore_index",
|
|
"(int, default -100), Specifies a target value that is"
|
|
"ignored and does not contribute to the input gradient."
|
|
"Only valid if soft_label is set to False")
|
|
.SetDefault(-100);
|
|
AddComment(R"DOC(
|
|
CrossEntropy Operator.
|
|
|
|
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs.
|
|
The matrix's second dimension(row length) is as same as the original last
|
|
dimension, and the first dimension(column length) is the product of all other
|
|
original dimensions. Then the softmax computation will take palce on each raw
|
|
of flattened matrixs.
|
|
|
|
It supports both standard cross-entropy and soft-label cross-entropy loss
|
|
computation.
|
|
1) One-hot cross-entropy:
|
|
soft_label = false, Label[i, 0] indicates the class index for sample i:
|
|
|
|
$Y[i] = -\log(X[i, Label[i]])$
|
|
|
|
2) Soft-label cross-entropy:
|
|
soft_label = true, Label[i, j] indicates the soft label of class j
|
|
for sample i:
|
|
|
|
$Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}$
|
|
|
|
Please make sure that in this case the summuation of each row of Label
|
|
equals one.
|
|
|
|
3) One-hot cross-entropy with vecterized Input(Label):
|
|
As a special case of 2), when each row of Input(Label) has only one
|
|
non-zero element (equals 1), soft-label cross-entropy degenerates to a
|
|
one-hot cross-entropy with one-hot label representation.
|
|
|
|
Both the input X and Label can carry the LoD (Level of Details) information,
|
|
or not. But the output only shares the LoD information with input X.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class CrossEntropyGradientOp : public CrossEntropyGradientOpBase {
|
|
public:
|
|
using CrossEntropyGradientOpBase::CrossEntropyGradientOpBase;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) should be not null.");
|
|
CrossEntropyGradientOpBase::InferShape(ctx);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class CrossEntropyGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("cross_entropy_grad");
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("Label", this->Input("Label"));
|
|
op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
class CrossEntropyOp2 : public CrossEntropyOpBase {
|
|
public:
|
|
using CrossEntropyOpBase::CrossEntropyOpBase;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
CrossEntropyOpBase::InferShape(ctx);
|
|
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
|
|
"Output(XShape) should be not null.");
|
|
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("MatchX"), true,
|
|
"Output(MatchX) should be not null.");
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto x_dims_vec = framework::vectorize(x_dims);
|
|
x_dims_vec.push_back(0);
|
|
ctx->SetOutputDim("XShape", framework::make_ddim(x_dims_vec));
|
|
x_dims[x_dims.size() - 1] = 1;
|
|
ctx->SetOutputDim("MatchX", x_dims);
|
|
ctx->ShareLoD("X", /*->*/ "XShape");
|
|
}
|
|
|
|
protected:
|
|
bool IsSoftLabel(framework::InferShapeContext* ctx) const override {
|
|
return false;
|
|
}
|
|
};
|
|
|
|
class CrossEntropyGradientOp2 : public CrossEntropyGradientOpBase {
|
|
public:
|
|
using CrossEntropyGradientOpBase::CrossEntropyGradientOpBase;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("MatchX"), true,
|
|
"Input(MatchX) must exist");
|
|
CrossEntropyGradientOpBase::InferShape(ctx);
|
|
}
|
|
|
|
protected:
|
|
virtual framework::DDim GetXDim(framework::InferShapeContext* ctx) const {
|
|
auto x_shape = ctx->GetInputDim("XShape");
|
|
return framework::DDim(x_shape.Get(), x_shape.size() - 1);
|
|
}
|
|
|
|
virtual const char* VarNameWithXLoD() const { return "XShape"; }
|
|
|
|
virtual bool IsSoftLabel(framework::InferShapeContext* ctx) const {
|
|
return false;
|
|
}
|
|
};
|
|
|
|
class CrossEntropyOpMaker2 : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(Tensor, default Tensor<float>), a tensor whose last dimension "
|
|
"size is equal to the number of classes. This input is a "
|
|
"probability computed by the previous operator, which is almost "
|
|
"always the result of a softmax operator.");
|
|
AddInput(
|
|
"Label",
|
|
"(Tensor), the tensor which represents the ground truth. It has the "
|
|
"same shape with 'X' except the last dimension. One hot Tensor.");
|
|
AddOutput("Y",
|
|
"(Tensor, default Tensor<float>), a tensor whose shape is same "
|
|
"with 'X' except that the last dimension size is 1. It "
|
|
"represents the cross entropy loss.");
|
|
AddOutput("XShape", "Temporaily variable to save shape and LoD of X.");
|
|
AddOutput("MatchX",
|
|
"X value that matches label, used for gradient computation.");
|
|
AddAttr<int>("ignore_index",
|
|
"(int, default -100), Specifies a target value that is"
|
|
"ignored and does not contribute to the input gradient."
|
|
"Only valid if soft_label is set to False")
|
|
.SetDefault(-100);
|
|
AddComment(R"DOC(
|
|
Hard-label CrossEntropy Operator.
|
|
|
|
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs.
|
|
The matrix's second dimension(row length) is as same as the original last
|
|
dimension, and the first dimension(column length) is the product of all other
|
|
original dimensions. Then the softmax computation will take palce on each raw
|
|
of flattened matrixs.
|
|
|
|
Only support hard label.
|
|
|
|
Both the input X and Label can carry the LoD (Level of Details) information,
|
|
or not. But the output only shares the LoD information with input X.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class CrossEntropyGradOpMaker2 : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("cross_entropy_grad2");
|
|
op->SetInput("Label", this->Input("Label"));
|
|
op->SetInput("MatchX", this->Output("MatchX"));
|
|
op->SetInput("XShape", this->Output("XShape"));
|
|
op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
using CPUCtx = paddle::platform::CPUDeviceContext;
|
|
|
|
REGISTER_OPERATOR(cross_entropy, ops::CrossEntropyOpBase,
|
|
ops::CrossEntropyOpMaker, ops::CrossEntropyOpInferVarType,
|
|
ops::CrossEntropyGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::CrossEntropyGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(cross_entropy_grad, ops::CrossEntropyGradientOp);
|
|
REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<CPUCtx, float>,
|
|
ops::CrossEntropyOpKernel<CPUCtx, double>);
|
|
REGISTER_OP_CPU_KERNEL(cross_entropy_grad,
|
|
ops::CrossEntropyGradientOpKernel<CPUCtx, float>,
|
|
ops::CrossEntropyGradientOpKernel<CPUCtx, double>);
|
|
|
|
REGISTER_OPERATOR(cross_entropy2, ops::CrossEntropyOp2,
|
|
ops::CrossEntropyOpMaker2, ops::CrossEntropyOpInferVarType,
|
|
ops::CrossEntropyGradOpMaker2<paddle::framework::OpDesc>,
|
|
ops::CrossEntropyGradOpMaker2<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(cross_entropy_grad2, ops::CrossEntropyGradientOp2);
|
|
REGISTER_OP_CPU_KERNEL(cross_entropy2,
|
|
ops::CrossEntropyOpKernel2<CPUCtx, float>,
|
|
ops::CrossEntropyOpKernel2<CPUCtx, double>);
|
|
REGISTER_OP_CPU_KERNEL(cross_entropy_grad2,
|
|
ops::CrossEntropyGradientOpKernel2<CPUCtx, float>,
|
|
ops::CrossEntropyGradientOpKernel2<CPUCtx, double>);
|