You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
139 lines
5.5 KiB
139 lines
5.5 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/expand_as_op.h"
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class ExpandAsOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true);
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("target_tensor"), true);
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true);
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto target_tensor_dims = ctx->GetInputDim("target_tensor");
|
|
PADDLE_ENFORCE_EQ(static_cast<size_t>(x_dims.size()),
|
|
target_tensor_dims.size(),
|
|
"The rank of input(target_tensor) must be equal "
|
|
"to the rank of Input(X).");
|
|
PADDLE_ENFORCE_LE(x_dims.size(), 6,
|
|
"The rank of Input(X) must not be greater than 6.");
|
|
std::vector<int64_t> out_shape(x_dims.size());
|
|
ctx->SetOutputDim("Out", framework::make_ddim(out_shape));
|
|
}
|
|
};
|
|
|
|
class ExpandAsOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
|
|
"X is the input to be expanded.");
|
|
AddOutput("Out",
|
|
"(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
|
|
"The rank of Output(Out) have the same with Input(X). "
|
|
"After expanding, size of each dimension of Output(Out) is equal "
|
|
"to size of the corresponding dimension of Input(X) multiplying "
|
|
"the corresponding value given by Attr(expand_times).");
|
|
AddInput("target_tensor", "Expand tensor's shape for each dimension.");
|
|
AddComment(R"DOC(
|
|
Expand as operator tiles the input by given times number. You should set times
|
|
number for each dimension by providing tensor 'expend_tensor'. The rank of X
|
|
should be in [1, 6]. Please note that size of 'expend_tensor' must be the same
|
|
with X's rank. Following is a using case:
|
|
Input(X) is a 3-D tensor with shape [2, 3, 1]:
|
|
[
|
|
[[1], [2], [3]],
|
|
[[4], [5], [6]]
|
|
]
|
|
target_tensors'shape: [2, 6, 2]
|
|
Output(Out) is a 3-D tensor with shape [2, 6, 2]:
|
|
[
|
|
[[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
|
|
[[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
|
|
]
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class ExpandAsGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true);
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true);
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, x_dims);
|
|
}
|
|
}
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out")),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ExpandAsGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("expand_as_grad");
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("target_tensor", this->Input("target_tensor"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ExpandAsGradNoNeedBufVarsInferer, "X");
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(expand_as, ops::ExpandAsOp, ops::ExpandAsOpMaker,
|
|
ops::ExpandAsGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::ExpandAsGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(expand_as_grad, ops::ExpandAsGradOp,
|
|
ops::ExpandAsGradNoNeedBufVarsInferer);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
expand_as, ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
|
ops::ExpandAsKernel<paddle::platform::CPUDeviceContext, bool>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
expand_as_grad,
|
|
ops::ExpandAsGradKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::ExpandAsGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
|
ops::ExpandAsGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::ExpandAsGradKernel<paddle::platform::CPUDeviceContext, double>);
|