You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/merge_lod_tensor_op.cc

246 lines
9.3 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
namespace paddle {
namespace operators {
using LoD = framework::LoD;
class MergeLoDTensorOp : public framework::OperatorBase {
public:
MergeLoDTensorOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
protected:
void RunBase(const framework::Scope &scope,
const platform::Place &dev_place) const {
// get device context from pool
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(dev_place);
auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>();
auto &mask = scope.FindVar(Input("Mask"))->Get<framework::LoDTensor>();
auto &in_true = scope.FindVar(Input("InTrue"))->Get<framework::LoDTensor>();
auto &in_false =
scope.FindVar(Input("InFalse"))->Get<framework::LoDTensor>();
auto *out =
scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
auto level = static_cast<size_t>(Attr<int>("level"));
PADDLE_ENFORCE(in_true.numel() || in_false.numel(),
"Input(InTrue) or Input(InFalse) should be initialized.");
auto &mask_dim = mask.dims();
std::unique_ptr<framework::LoDTensor> cpu_mask{new framework::LoDTensor()};
if (platform::is_cpu_place(mask.place())) {
cpu_mask->ShareDataWith(mask);
} else if (platform::is_gpu_place(mask.place())) {
#ifdef PADDLE_WITH_CUDA
framework::TensorCopy(mask, platform::CPUPlace(), dev_ctx,
cpu_mask.get());
#else
PADDLE_THROW("Not supported GPU, Please compile WITH_GPU option");
#endif
}
auto *mask_data = cpu_mask->data<bool>();
platform::Place place = dev_place;
int64_t batch_size = in_true.dims()[0] + in_false.dims()[0];
auto data_type = in_true.IsInitialized() ? in_true.type() : in_false.type();
int rank;
framework::DDim in_dims;
if (in_true.IsInitialized()) {
rank = in_true.dims().size();
in_dims = framework::slice_ddim(in_true.dims(), 1, rank);
} else {
rank = in_false.dims().size();
in_dims = framework::slice_ddim(in_false.dims(), 1, rank);
}
auto in_dim_vec = framework::vectorize(in_dims);
in_dim_vec.insert(in_dim_vec.begin(), batch_size);
framework::DDim out_dims = framework::make_ddim(in_dim_vec);
out->Resize(out_dims);
out->mutable_data(place, data_type);
auto *out_lod = out->mutable_lod();
out_lod->clear();
size_t out_offset = 0;
// Build LoDTensor `out`
size_t in_true_idx = 0;
size_t in_false_idx = 0;
for (size_t i = 0; i < static_cast<size_t>(mask_dim[0]); i++) {
const framework::LoDTensor *input = nullptr;
size_t *in_idx = nullptr;
if (static_cast<int>(mask_data[i]) == 0) {
input = &in_false;
in_idx = &in_false_idx;
} else {
input = &in_true;
in_idx = &in_true_idx;
}
auto lod_and_offset = framework::GetSubLoDAndAbsoluteOffset(
input->lod(), *in_idx, (*in_idx) + 1, 0);
auto &lod_length = lod_and_offset.first;
framework::AppendLoD(out_lod, lod_length);
size_t start_offset = lod_and_offset.second.first;
size_t end_offset = lod_and_offset.second.second;
PADDLE_ENFORCE_GE(end_offset, start_offset);
size_t len = end_offset - start_offset;
if (len == 0) {
continue;
}
auto slice = out->Slice(out_offset, out_offset + len);
framework::TensorCopy(input->Slice(start_offset, end_offset), place,
dev_ctx, &slice);
out_offset += len;
(*in_idx) += 1;
}
for (size_t i = 0; i < level; i++) {
out_lod->insert(out_lod->begin(), x.lod()[i]);
}
}
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override {
RunBase(scope, dev_place);
}
};
class MergeLoDTensorInferOp : public MergeLoDTensorOp {
public:
MergeLoDTensorInferOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: MergeLoDTensorOp(type, inputs, outputs, attrs) {}
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override {
RunBase(scope, dev_place);
framework::Variable *in_true_var = scope.FindVar(Input("InTrue"));
framework::Variable *in_false_var = scope.FindVar(Input("InFalse"));
in_true_var->Clear();
in_false_var->Clear();
in_true_var->GetMutable<framework::LoDTensor>();
in_false_var->GetMutable<framework::LoDTensor>();
}
};
class MergeLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"The input LoDTensor, contains complete lod information to "
"construct the output");
AddInput("Mask", "A bool column vector which mask the input");
AddInput("InTrue", "The True branch to be merged");
AddInput("InFalse", "The False branch to be merged");
AddOutput("Out", "The merged output LoDTensor");
AddAttr<int>("level", "(int) the specific lod level to rank.")
.SetDefault(0)
.EqualGreaterThan(0);
AddComment(
R"DOC(
Merge True and False branches of LoDTensor into a single Output,
with a mask at certain lod level. X is used to obtain complete
lod information. Please refer to SplitLoDTensorOp.)DOC");
}
};
class MergeLoDTensorInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInput("X"),
"MergeLoDTensorOp must have input X.");
PADDLE_ENFORCE(context->HasInput("Mask"),
"MergeLoDTensorOp must have input Mask.");
PADDLE_ENFORCE(context->HasInput("InTrue"),
"MergeLoDTensorOp must have input InTrue.");
PADDLE_ENFORCE(context->HasInput("InFalse"),
"MergeLoDTensorOp must have input InFalse.");
PADDLE_ENFORCE(context->HasOutput("Out"),
"MergeLoDTensorOp must have output Out");
auto mask_dim = context->GetInputDim("Mask");
PADDLE_ENFORCE_EQ(mask_dim.size(), 2,
"If you are using IfElse OP:"
"\n\nie = fluid.layers.IfElse(cond=cond)\nwith "
"ie.true_block():\n out_1 = ie.input(x)\n\n"
"Please ensure that the cond should be a 2-D tensor and "
"the second dim size of cond should be 1. "
"But now the cond's shape is [",
*mask_dim.Get(), "].\n");
if (context->IsRuntime() || mask_dim[1] > 0) {
PADDLE_ENFORCE_EQ(mask_dim[1], 1,
"If you are using IfElse OP:"
"\n\nie = fluid.layers.IfElse(cond=cond)\nwith "
"ie.true_block():\n out_1 = ie.input(x)\n\n"
"Please ensure that the cond should be a 2-D tensor "
"and the second dim size of cond should be 1. "
"But now the cond's shape is [",
*mask_dim.Get(), "].\n");
}
context->SetOutputDim("Out", context->GetInputDim("InTrue"));
}
};
template <typename T>
class MergeLoDTensorGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("split_lod_tensor");
grad_op->SetInput("X", this->OutputGrad("Out"));
grad_op->SetInput("Mask", this->Input("Mask"));
grad_op->SetOutput("OutTrue", this->InputGrad("InTrue"));
grad_op->SetOutput("OutFalse", this->InputGrad("InFalse"));
grad_op->SetAttrMap(this->Attrs());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(merge_lod_tensor, ops::MergeLoDTensorOp,
ops::MergeLoDTensorOpProtoMaker,
ops::MergeLoDTensorInferShape,
ops::MergeLoDTensorGradMaker<paddle::framework::OpDesc>,
ops::MergeLoDTensorGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
merge_lod_tensor_infer, ops::MergeLoDTensorInferOp,
ops::MergeLoDTensorOpProtoMaker, ops::MergeLoDTensorInferShape,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);