You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/randint_op.cu

77 lines
2.8 KiB

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <thrust/random.h>
#include <thrust/transform.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/uniform_random_op.h"
namespace paddle {
namespace operators {
template <typename T>
struct UniformIntGenerator {
T low_, high_;
__host__ __device__ UniformIntGenerator(T low, T high)
: low_(low), high_(high) {}
__host__ __device__ T operator()(const unsigned int n) const {
thrust::minstd_rand rng;
rng.seed(0);
thrust::uniform_int_distribution<T> dist(low_, high_);
rng.discard(n);
T out = dist(rng);
return out;
}
};
// Use std::uniform_int_distribution and thrust::uniform_int_distribution(thrust
// is a std library in CUDA) to
// implement randint.
template <typename T>
class GPURandintKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
std::vector<int64_t> new_shape;
auto list_new_shape_tensor =
context.MultiInput<framework::Tensor>("ShapeTensorList");
if (list_new_shape_tensor.size() > 0 || context.HasInput("ShapeTensor")) {
if (context.HasInput("ShapeTensor")) {
auto* shape_tensor = context.Input<framework::Tensor>("ShapeTensor");
new_shape = GetNewDataFromShapeTensor(shape_tensor);
} else if (list_new_shape_tensor.size() > 0) {
new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor);
}
}
auto* out = context.Output<framework::LoDTensor>("Out");
if (!new_shape.empty()) out->Resize(framework::make_ddim(new_shape));
T* data = out->mutable_data<T>(context.GetPlace());
T low = static_cast<T>(context.Attr<int>("low"));
T high = static_cast<T>(context.Attr<int>("high")) - 1;
thrust::counting_iterator<unsigned int> index_sequence_begin(0);
int64_t size = out->numel();
thrust::transform(index_sequence_begin, index_sequence_begin + size,
thrust::device_ptr<T>(data),
UniformIntGenerator<T>(low, high));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(randint, ops::GPURandintKernel<int>,
ops::GPURandintKernel<int64_t>)