You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
3.4 KiB
97 lines
3.4 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/randperm_op.h"
|
|
#include <string>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/operator.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class RandpermOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
|
|
platform::errors::NotFound(
|
|
"The output(Out) of randperm op must not be null."));
|
|
int n = ctx->Attrs().Get<int>("n");
|
|
PADDLE_ENFORCE_GT(
|
|
n, 0, platform::errors::InvalidArgument(
|
|
"The input(n) of randperm op must be greater than 0."));
|
|
|
|
ctx->SetOutputDim("Out", framework::make_ddim({n}));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
auto data_type =
|
|
static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype"));
|
|
return framework::OpKernelType(data_type, ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class RandpermOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddOutput("Out", "The output tensor of randperm op.");
|
|
|
|
AddAttr<int>(
|
|
"n", "The upper bound (exclusive), and it should be greater than 0.");
|
|
AddAttr<int>("dtype",
|
|
"The data type of output tensor. "
|
|
"Default: 3[int64].")
|
|
.SetDefault(framework::proto::VarType::INT64);
|
|
AddAttr<int>("seed",
|
|
"Random seed used for permute samples. "
|
|
"0 means use a seed generated by the system."
|
|
"Note that if seed is not 0, this operator will always "
|
|
"generate the same random permutation every time. "
|
|
"Default: 0.")
|
|
.SetDefault(0);
|
|
|
|
AddComment(R"DOC(
|
|
This operator returns a random permutation of integers from 0 to n-1.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class RandpermOpVarTypeInference : public framework::VarTypeInference {
|
|
public:
|
|
void operator()(framework::InferVarTypeContext *ctx) const override {
|
|
auto var_data_type = static_cast<framework::proto::VarType::Type>(
|
|
boost::get<int>(ctx->GetAttr("dtype")));
|
|
auto out_var_name = ctx->Output("Out").front();
|
|
ctx->SetDataType(out_var_name, var_data_type);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
REGISTER_OPERATOR(
|
|
randperm, paddle::operators::RandpermOp, paddle::operators::RandpermOpMaker,
|
|
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
|
|
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
|
|
paddle::operators::RandpermOpVarTypeInference);
|
|
|
|
template <typename T>
|
|
using kernel =
|
|
paddle::operators::RandpermKernel<paddle::platform::CPUDeviceContext, T>;
|
|
|
|
REGISTER_OP_CPU_KERNEL(randperm, kernel<int64_t>, kernel<int>);
|