You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
161 lines
5.4 KiB
161 lines
5.4 KiB
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
#include "paddle/fluid/operators/matmul_v2_op.h"
|
|
#include "paddle/fluid/operators/npu_op_runner.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class MatMulV2NPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* x = ctx.Input<framework::Tensor>("X");
|
|
auto* y = ctx.Input<framework::Tensor>("Y");
|
|
auto* out = ctx.Output<framework::Tensor>("Out");
|
|
bool transpose_x = ctx.Attr<bool>("trans_x");
|
|
bool transpose_y = ctx.Attr<bool>("trans_y");
|
|
|
|
if (x->dims().size() == 2) {
|
|
out->mutable_data<T>(ctx.GetPlace());
|
|
|
|
auto runner = NpuOpRunner(
|
|
"MatMul", {*x, *y}, {*out},
|
|
{{"transpose_x1", transpose_x}, {"transpose_x2", transpose_y}});
|
|
|
|
auto stream =
|
|
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
|
.stream();
|
|
runner.Run(stream);
|
|
|
|
} else if (x->dims().size() > 2) {
|
|
out->mutable_data<T>(ctx.GetPlace());
|
|
|
|
auto runner =
|
|
NpuOpRunner("BatchMatMul", {*x, *y}, {*out},
|
|
{{"adj_x1", transpose_x}, {"adj_x2", transpose_y}});
|
|
|
|
auto stream =
|
|
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
|
.stream();
|
|
runner.Run(stream);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class MatMulV2GradNPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* x = ctx.Input<framework::Tensor>("X");
|
|
auto* y = ctx.Input<framework::Tensor>("Y");
|
|
auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
|
auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
|
|
bool transpose_y = ctx.Attr<bool>("trans_y");
|
|
auto stream =
|
|
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
|
.stream();
|
|
|
|
if (x->dims().size() == 2) {
|
|
if (transpose_y) {
|
|
if (dx) {
|
|
dx->mutable_data<T>(ctx.GetPlace());
|
|
auto runner_dx =
|
|
NpuOpRunner("MatMul", {*dout, *y}, {*dx},
|
|
{{"transpose_x1", false}, {"transpose_x2", false}});
|
|
|
|
runner_dx.Run(stream);
|
|
}
|
|
if (dy) {
|
|
dy->mutable_data<T>(ctx.GetPlace());
|
|
auto runner_dy =
|
|
NpuOpRunner("MatMul", {*dout, *x}, {*dy},
|
|
{{"transpose_x1", true}, {"transpose_x2", false}});
|
|
|
|
runner_dy.Run(stream);
|
|
}
|
|
|
|
} else {
|
|
if (dx) {
|
|
dx->mutable_data<T>(ctx.GetPlace());
|
|
auto runner_dx =
|
|
NpuOpRunner("MatMul", {*dout, *y}, {*dx},
|
|
{{"transpose_x1", false}, {"transpose_x2", true}});
|
|
|
|
runner_dx.Run(stream);
|
|
}
|
|
if (dy) {
|
|
dy->mutable_data<T>(ctx.GetPlace());
|
|
auto runner_dy =
|
|
NpuOpRunner("MatMul", {*x, *dout}, {*dy},
|
|
{{"transpose_x1", true}, {"transpose_x2", false}});
|
|
|
|
runner_dy.Run(stream);
|
|
}
|
|
}
|
|
} else if (x->dims().size() > 2) {
|
|
if (transpose_y) {
|
|
if (dx) {
|
|
dx->mutable_data<T>(ctx.GetPlace());
|
|
auto runner_dx = NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx},
|
|
{{"adj_x1", false}, {"adj_x2", false}});
|
|
|
|
runner_dx.Run(stream);
|
|
}
|
|
if (dy) {
|
|
dy->mutable_data<T>(ctx.GetPlace());
|
|
auto runner_dy = NpuOpRunner("BatchMatMul", {*dout, *x}, {*dy},
|
|
{{"adj_x1", true}, {"adj_x2", false}});
|
|
|
|
runner_dy.Run(stream);
|
|
}
|
|
} else {
|
|
if (dx) {
|
|
dx->mutable_data<T>(ctx.GetPlace());
|
|
auto runner_dx = NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx},
|
|
{{"adj_x1", false}, {"adj_x2", true}});
|
|
|
|
runner_dx.Run(stream);
|
|
}
|
|
if (dy) {
|
|
dy->mutable_data<T>(ctx.GetPlace());
|
|
auto runner_dy = NpuOpRunner("BatchMatMul", {*x, *dout}, {*dy},
|
|
{{"adj_x1", true}, {"adj_x2", false}});
|
|
runner_dy.Run(stream);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_NPU_KERNEL(
|
|
matmul_v2,
|
|
ops::MatMulV2NPUKernel<paddle::platform::NPUDeviceContext, float>,
|
|
ops::MatMulV2NPUKernel<paddle::platform::NPUDeviceContext,
|
|
paddle::platform::float16>);
|
|
REGISTER_OP_NPU_KERNEL(
|
|
matmul_v2_grad,
|
|
ops::MatMulV2GradNPUKernel<paddle::platform::NPUDeviceContext, float>,
|
|
ops::MatMulV2GradNPUKernel<paddle::platform::NPUDeviceContext,
|
|
paddle::platform::float16>);
|