You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
187 lines
7.5 KiB
187 lines
7.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/reduce_op.h"
|
|
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class ReduceOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of ReduceOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of ReduceOp should not be null.");
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto x_rank = x_dims.size();
|
|
PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported.");
|
|
auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
|
|
for (size_t i = 0; i < dims.size(); ++i) {
|
|
if (dims[i] < 0) dims[i] = x_rank + dims[i];
|
|
PADDLE_ENFORCE_LT(
|
|
dims[i], x_rank,
|
|
"The dim should be in the range [-rank(input), rank(input)).");
|
|
}
|
|
sort(dims.begin(), dims.end());
|
|
bool reduce_all = ctx->Attrs().Get<bool>("reduce_all");
|
|
bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
|
|
if (reduce_all) {
|
|
if (keep_dim)
|
|
ctx->SetOutputDim(
|
|
"Out", framework::make_ddim(std::vector<int64_t>(x_rank, 1)));
|
|
else
|
|
ctx->SetOutputDim("Out", {1});
|
|
} else {
|
|
auto dims_vector = vectorize(x_dims);
|
|
if (keep_dim) {
|
|
for (size_t i = 0; i < dims.size(); ++i) {
|
|
dims_vector[dims[i]] = 1;
|
|
}
|
|
} else {
|
|
const int kDelFlag = -2;
|
|
for (size_t i = 0; i < dims.size(); ++i) {
|
|
dims_vector[dims[i]] = kDelFlag;
|
|
}
|
|
dims_vector.erase(
|
|
remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
|
|
dims_vector.end());
|
|
}
|
|
auto out_dims = framework::make_ddim(dims_vector);
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
if (dims[0] != 0) {
|
|
// Only pass LoD when not reducing on the first dim.
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
class ReduceGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) should not be null.");
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto x_rank = x_dims.size();
|
|
PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported.");
|
|
auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
|
|
for (size_t i = 0; i < dims.size(); ++i) {
|
|
if (dims[i] < 0) dims[i] = x_rank + dims[i];
|
|
PADDLE_ENFORCE_LT(
|
|
dims[i], x_rank,
|
|
"The dim should be in the range [-rank(input), rank(input)).");
|
|
}
|
|
sort(dims.begin(), dims.end());
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, x_dims);
|
|
ctx->ShareLoD("X", /*->*/ x_grad_name);
|
|
}
|
|
}
|
|
};
|
|
|
|
class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() final {
|
|
AddInput("X",
|
|
"(Tensor) The input tensor. Tensors with rank at most 6 are "
|
|
"supported.");
|
|
AddOutput("Out", "(Tensor) The result tensor.");
|
|
AddAttr<std::vector<int>>(
|
|
"dim",
|
|
"(list<int>, default {0}) The dimensions to reduce. "
|
|
"Must be in the range [-rank(input), rank(input)). "
|
|
"If `dim[i] < 0`, the dims[i] to reduce is `rank + dims[i]`. "
|
|
"Note that reducing on the first dim will make the LoD info lost.")
|
|
.SetDefault({0});
|
|
AddAttr<bool>("keep_dim",
|
|
"(bool, default false) "
|
|
"If true, retain the reduced dimension with length 1.")
|
|
.SetDefault(false);
|
|
AddAttr<bool>("reduce_all",
|
|
"(bool, default false) "
|
|
"If true, output a scalar reduced along all dimensions.")
|
|
.SetDefault(false);
|
|
AddComment(string::Sprintf(R"DOC(
|
|
%s Operator.
|
|
|
|
This operator computes the %s of input tensor along the given dimension.
|
|
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
|
|
If reduce_all is true, just reduce along all dimensions and output a scalar.
|
|
|
|
)DOC",
|
|
GetOpType(), GetName()));
|
|
}
|
|
|
|
protected:
|
|
virtual std::string GetName() const = 0;
|
|
virtual std::string GetOpType() const = 0;
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
#define REGISTER_REDUCE_OP(op_name) \
|
|
class __##op_name##Maker__ : public ops::ReduceOpMaker { \
|
|
protected: \
|
|
virtual std::string GetName() const { return #op_name; } \
|
|
virtual std::string GetOpType() const { return "Reduce " #op_name; } \
|
|
}; \
|
|
REGISTER_OPERATOR(reduce_##op_name, ops::ReduceOp, __##op_name##Maker__, \
|
|
paddle::framework::DefaultGradOpDescMaker<true>); \
|
|
REGISTER_OPERATOR(reduce_##op_name##_grad, ops::ReduceGradOp)
|
|
|
|
REGISTER_REDUCE_OP(sum);
|
|
REGISTER_REDUCE_OP(mean);
|
|
REGISTER_REDUCE_OP(max);
|
|
REGISTER_REDUCE_OP(min);
|
|
REGISTER_REDUCE_OP(prod);
|
|
|
|
#define REGISTER_REDUCE_CPU_KERNEL(reduce_type, functor, grad_functor) \
|
|
REGISTER_OP_CPU_KERNEL(reduce_type, \
|
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext, \
|
|
float, ops::functor>, \
|
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext, \
|
|
double, ops::functor>, \
|
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext, \
|
|
int, ops::functor>, \
|
|
ops::ReduceKernel<paddle::platform::CPUDeviceContext, \
|
|
int64_t, ops::functor>); \
|
|
REGISTER_OP_CPU_KERNEL( \
|
|
reduce_type##_grad, \
|
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, float, \
|
|
ops::grad_functor>, \
|
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, double, \
|
|
ops::grad_functor>, \
|
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, int, \
|
|
ops::grad_functor>, \
|
|
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, int64_t, \
|
|
ops::grad_functor>);
|
|
|
|
FOR_EACH_KERNEL_FUNCTOR(REGISTER_REDUCE_CPU_KERNEL);
|