You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/framework/tests/gradient_checker.py

91 lines
3.3 KiB

import paddle.v2.framework.core as core
from paddle.v2.framework.create_op_creation_methods import op_creations
import numpy
import unittest
__all__ = ['get_numeric_gradient']
def get_numeric_gradient(op,
input_values,
output_name,
input_to_check,
delta=1e-2,
local_scope=None):
"""
Get Numeric Gradient for an operator's input.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array.
:param output_name: The final output variable name.
:param input_to_check: The input variable need to get gradient.
:param delta: The perturbation value for numeric gradient method. The
smaller delta is, the more accurate result will get. But if that delta is
too small, it could occur numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient.
:return: The gradient array in numpy format.
"""
if local_scope is None:
local_scope = core.Scope()
# Create all input variable in local_scope
for var_name in input_values:
var = local_scope.new_var(var_name)
tensor = var.get_tensor()
tensor.set_dims(input_values[var_name].shape)
tensor.alloc_float(core.CPUPlace())
tensor.set(input_values[var_name], core.CPUPlace())
# Create all output variable in local_scope
for output in op.outputs():
if local_scope.find_var(output) is None:
local_scope.new_var(output).get_tensor()
op.infer_shape(local_scope)
# allocate output memory
for output in op.outputs():
local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace())
# TODO(yuyang18): Only CPU is support now.
cpu_ctx = core.DeviceContext.create(core.CPUPlace())
def get_output():
op.run(local_scope, cpu_ctx)
return numpy.array(local_scope.find_var(output_name).get_tensor()).sum()
def product(dim):
return reduce(lambda a, b: a * b, dim, 1)
tensor_to_check = local_scope.find_var(input_to_check).get_tensor()
tensor_size = product(tensor_to_check.get_dims())
gradient_flat = numpy.zeros(shape=(tensor_size, ), dtype='float32')
for i in xrange(tensor_size):
origin = tensor_to_check.get_float_element(i)
x_pos = origin + delta
tensor_to_check.set_float_element(i, x_pos)
y_pos = get_output()
x_neg = origin - delta
tensor_to_check.set_float_element(i, x_neg)
y_neg = get_output()
tensor_to_check.set_float_element(i, origin) # restore old value
gradient_flat[i] = (y_pos - y_neg) / delta / 2
return gradient_flat.reshape(tensor_to_check.get_dims())
if __name__ == '__main__':
class GetNumericGradientTest(unittest.TestCase):
def test_add_op(self):
add_op = op_creations.add_two(X="X", Y="Y", Out="Z")
x = numpy.random.random((10, 1)).astype("float32")
y = numpy.random.random((10, 1)).astype("float32")
arr = get_numeric_gradient(add_op, {'X': x, "Y": y}, 'Z', 'X')
self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-2)
unittest.main()