You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/ir/graph_pattern_detector.cc

2799 lines
103 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <array>
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/graph_traits.h"
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/string/pretty_log.h"
#include "paddle/fluid/string/printf.h"
namespace paddle {
namespace framework {
namespace ir {
using string::PrettyLog;
using string::Style;
size_t PDPattern::id_ = 0UL;
PDNode *PDPattern::NewNode(const std::string &name) {
if (!name.empty()) {
PADDLE_ENFORCE_EQ(
node_map_.count(name), 0UL,
platform::errors::PreconditionNotMet(
"PDNode's name should be unique, get duplicate [%s]", name));
}
nodes_.emplace_back(new PDNode(this, name));
auto *cur = nodes_.back().get();
node_map_[name] = cur;
return cur;
}
PDNode *PDPattern::NewNode(PDNode::teller_t &&teller, const std::string &name) {
if (!name.empty()) {
PADDLE_ENFORCE_EQ(
node_map_.count(name), 0UL,
platform::errors::PreconditionNotMet(
"PDNode's name should be unique, get duplicate [%s]", name));
}
nodes_.emplace_back(new PDNode(std::move(teller), this, name));
auto *cur = nodes_.back().get();
node_map_[name] = cur;
return cur;
}
PDNode *PDPattern::RetrieveNode(const std::string &id) const {
auto it = node_map_.find(id);
if (it == node_map_.end()) {
return nullptr;
}
return it->second;
}
void PDPattern::AddEdge(PDNode *a, PDNode *b) {
PADDLE_ENFORCE_NOT_NULL(
a, platform::errors::NotFound("PDNode %s is not found.", a->name()));
PADDLE_ENFORCE_NOT_NULL(
b, platform::errors::NotFound("PDNode %s is not found.", b->name()));
PADDLE_ENFORCE_NE(a, b, platform::errors::PermissionDenied(
"Cannot connect the same node in the graph."));
edges_.emplace_back(a, b);
}
void GraphPatternDetector::operator()(Graph *graph,
GraphPatternDetector::handle_t handler) {
if (!MarkPDNodesInGraph(*graph)) {
return;
}
auto subgraphs = DetectPatterns();
UniquePatterns(&subgraphs);
SortSubgraphs(&subgraphs);
RemoveOverlappedMatch(&subgraphs);
ValidateByNodeRole(&subgraphs);
if (subgraphs.empty()) return;
LOG(INFO) << "--- detected " << subgraphs.size() << " subgraphs";
int id = 0;
for (auto &g : subgraphs) {
VLOG(3) << "optimizing #" << id++ << " subgraph";
handler(g, graph);
}
}
bool GraphPatternDetector::MarkPDNodesInGraph(const ir::Graph &graph) {
VLOG(3) << "mark pdnodes in graph";
if (graph.Nodes().empty()) return false;
for (auto &node : GraphTraits::DFS(graph)) {
for (const auto &pdnode : pattern_.nodes()) {
if (pdnode->Tell(&node)) {
VLOG(4) << "Node " << node.Name() << " marked as " << pdnode->name();
pdnodes2nodes_[pdnode.get()].insert(&node);
}
}
}
// Check to early stop if some PDNode can't find matched Node.
for (auto &pdnode : pattern_.nodes()) {
if (!pdnodes2nodes_.count(pdnode.get())) {
VLOG(4) << pdnode->name() << " can't find matched Node, early stop";
// return false;
}
}
VLOG(3) << pdnodes2nodes_.size() << " nodes marked";
return !pdnodes2nodes_.empty();
}
// The intermediate Nodes can only link to the nodes inside the pattern, or this
// subgraph will be dropped.
void GraphPatternDetector::ValidateByNodeRole(
std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
std::vector<GraphPatternDetector::subgraph_t> result;
subgraphs->erase(
std::remove_if(
subgraphs->begin(), subgraphs->end(),
[](const GraphPatternDetector::subgraph_t &subgraph) -> bool {
// Collect the inputs and outputs.
std::set<Node *> ios;
for (auto &item : subgraph) {
if (!item.first->IsIntermediate()) {
ios.insert(item.second);
}
}
for (auto &item : subgraph) {
if (item.first->IsIntermediate()) {
for (auto *x : item.second->inputs) {
if (!ios.count(x)) {
return true;
}
}
for (auto *x : item.second->outputs) {
if (!ios.count(x)) {
return true;
}
}
}
}
return false;
}),
subgraphs->end());
}
struct HitGroup {
std::map<PDNode *, Node *> roles;
bool Match(Node *node, PDNode *pat) {
if (nodes_.count(node)) {
if (roles.count(pat) && roles[pat] == node) return true;
return false;
} else {
if (roles.count(pat) && roles[pat] != node) return false;
return true;
}
}
void Register(Node *node, PDNode *pat) {
roles[pat] = node;
nodes_.insert(node);
}
private:
std::set<Node *> nodes_;
};
// Tell whether Node a links to b.
bool IsNodesLink(Node *a, Node *b) {
for (auto *node : a->outputs) {
if (b == node) {
return true;
}
}
return false;
}
std::vector<GraphPatternDetector::subgraph_t>
GraphPatternDetector::DetectPatterns() {
// Init empty subgraphs.
std::vector<GraphPatternDetector::subgraph_t> result;
std::vector<HitGroup> init_groups;
std::array<std::vector<HitGroup>, 2> bi_records;
auto *first_pnode = pattern_.edges().empty() ? pattern().nodes().front().get()
: pattern_.edges().front().first;
if (!pdnodes2nodes_.count(first_pnode)) return result;
for (auto *node : pdnodes2nodes_[first_pnode]) {
HitGroup group;
group.roles[first_pnode] = node;
init_groups.emplace_back(group);
}
int step = 0;
bi_records[0] = std::move(init_groups);
// Extend a PDNode to subgraphs by deducing the connection relations defined
// in edges of PDNodes.
for (const auto &edge : pattern_.edges()) {
VLOG(4) << "check " << edge.first->name() << " -> " << edge.second->name();
// TODO(Superjomn) Fix bug here, the groups might be duplicate here.
// Each role has two PDNodes, which indicates two roles.
// Detect two Nodes that can match these two roles and they are connected.
auto &pre_groups = bi_records[step % 2];
auto &cur_groups = bi_records[1 - (step++ % 2)];
cur_groups.clear();
if (pre_groups.empty()) break;
// source -> target
for (Node *source : pdnodes2nodes_[edge.first]) {
for (Node *target : pdnodes2nodes_[edge.second]) {
VLOG(8) << "check " << source->id() << " -- " << target->id();
// TODO(Superjomn) add some prune strategies.
for (const auto &group : pre_groups) {
if (IsNodesLink(source, target)) {
HitGroup new_group = group;
bool flag = new_group.Match(source, edge.first) &&
new_group.Match(target, edge.second);
if (flag) {
new_group.Register(source, edge.first);
new_group.Register(target, edge.second);
cur_groups.push_back(new_group);
// TODO(Superjomn) need to unique
}
}
}
}
}
VLOG(3) << "step " << step << " get records: " << cur_groups.size();
for (auto &group : cur_groups) {
for (auto &item : group.roles) {
VLOG(4) << "node " << item.second->id() << " as " << item.first->name();
}
VLOG(4) << "=========================================================";
}
}
for (auto &group : bi_records[step % 2]) {
GraphPatternDetector::subgraph_t subgraph;
for (auto &role : group.roles) {
subgraph.emplace(role.first, role.second);
}
result.emplace_back(subgraph);
}
return result;
}
struct GraphItemLessThan {
bool operator()(const std::pair<PDNode *, Node *> &a,
const std::pair<PDNode *, Node *> &b) {
if (a.first != b.first) {
return a.first < b.first;
} else {
return a.second < b.second;
}
}
};
// TODO(Superjomn) enhance the function as it marks unique unique as duplicates
// see https://github.com/PaddlePaddle/Paddle/issues/13550
void GraphPatternDetector::UniquePatterns(
std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
if (subgraphs->empty()) return;
std::vector<GraphPatternDetector::subgraph_t> result;
std::set<size_t> set;
std::hash<std::string> hasher;
for (auto &g : *subgraphs) {
// Sort the items in the sub-graph, and transform to a string key.
std::vector<std::pair<PDNode *, Node *>> sorted_keys(g.begin(), g.end());
std::sort(sorted_keys.begin(), sorted_keys.end(), GraphItemLessThan());
std::stringstream ss;
for (auto &item : sorted_keys) {
ss << item.first << ":" << item.second;
}
auto key = hasher(ss.str());
if (!set.count(key)) {
result.emplace_back(g);
set.insert(key);
}
}
*subgraphs = result;
}
void GraphPatternDetector::SortSubgraphs(
std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
if (subgraphs->empty()) return;
bool has_bn_add_act = false;
for (auto &subgraph : *subgraphs) {
for (auto &item : subgraph) {
if (item.first->name().find("bn_add_act") != std::string::npos) {
has_bn_add_act = true;
break;
}
}
}
if (!has_bn_add_act) {
return;
}
std::sort(
subgraphs->begin(), subgraphs->end(),
[](const GraphPatternDetector::subgraph_t &a,
const GraphPatternDetector::subgraph_t &b) {
for (auto &item : a) {
if (item.first->name().find("bn_add_act") != std::string::npos &&
item.first->name().find("bn_reserve_space") !=
std::string::npos) {
auto it_b = b.find(item.first);
if (it_b != b.end()) {
if (item.second->Name() != it_b->second->Name()) {
return item.second->Name() < it_b->second->Name();
} else {
return false;
}
} else {
return false;
}
}
}
return false;
});
}
void GraphPatternDetector::RemoveOverlappedMatch(
std::vector<subgraph_t> *subgraphs) {
std::vector<subgraph_t> result;
std::set<Node *> node_set;
for (const auto &subgraph : *subgraphs) {
bool valid = true;
for (auto &item : subgraph) {
if (item.first->IsIntermediate() && node_set.count(item.second)) {
valid = false;
break;
}
}
if (valid) {
for (auto &item : subgraph) {
node_set.insert(item.second);
}
result.push_back(subgraph);
}
}
*subgraphs = result;
}
std::string PDPattern::DotString() const {
using inference::analysis::Dot;
Dot dot;
int id = 0;
// Create Nodes
std::unordered_map<PDNode *, std::string> node2dot;
for (const auto &node : nodes()) {
std::string node_id = "Node" + std::to_string(id++);
dot.AddNode(node_id, {}, node->name());
node2dot[node.get()] = node_id;
}
// Create Edges
for (const auto &edge : edges()) {
if (!node2dot.count(edge.first) || !node2dot.count(edge.second)) {
LOG(ERROR) << "no node " << edge.first << " " << edge.second;
continue;
}
auto &src = node2dot.at(edge.first);
auto &trg = node2dot.at(edge.second);
dot.AddEdge(src, trg, {});
}
return dot.Build();
}
PDNode &PDNode::LinksTo(const std::vector<PDNode *> &others) {
// extend outlinks.
for (PDNode *x : others) {
pattern_->AddEdge(this, x);
}
return *this;
}
PDNode &PDNode::LinksFrom(const std::vector<PDNode *> &others) {
// extend outlinks.
for (PDNode *x : others) {
pattern_->AddEdge(x, this);
}
return *this;
}
PDNode *PDNode::assert_is_op() {
asserts_.emplace_back([](Node *x) { return x && x->IsOp(); });
return this;
}
PDNode *PDNode::assert_is_op(const std::string &op_type) {
asserts_.emplace_back([op_type](Node *x) {
return x && x->IsOp() && x->Op()->Type() == op_type;
});
return this;
}
PDNode *PDNode::assert_is_var() {
asserts_.emplace_back([](Node *x) { return x && x->IsVar(); });
return this;
}
PDNode *PDNode::assert_var_dtype(proto::VarType::Type dtype) {
assert_is_var();
asserts_.emplace_back(
[dtype](Node *x) { return x->Var()->GetDataType() == dtype; });
return this;
}
PDNode *PDNode::assert_is_not_ctrl_var() {
asserts_.emplace_back([](Node *x) { return x && !x->IsCtrlVar(); });
return this;
}
PDNode *PDNode::assert_var_not_persistable() {
assert_is_var();
asserts_.emplace_back([](Node *x) { return !x->Var()->Persistable(); });
return this;
}
PDNode *PDNode::assert_is_persistable_var() {
assert_is_var();
asserts_.emplace_back([=](Node *x) { return x->Var()->Persistable(); });
return this;
}
PDNode *PDNode::assert_is_op_nth_input(const std::string &op_type,
const std::string &argument, int nth) {
assert_is_var();
assert_is_op_input(op_type);
asserts_.emplace_back([=](Node *x) {
for (auto *op : x->outputs) {
if (op->IsOp() && op->Op()->Type() == op_type &&
IsNthInput(x, op, argument, nth))
return true;
}
return false;
});
return this;
}
PDNode *PDNode::assert_is_op_nth_output(const std::string &op_type,
const std::string &argument, int nth) {
assert_is_var();
asserts_.emplace_back([=](Node *x) {
for (auto *op : x->inputs) {
if (op->IsOp() && op->Op()->Type() == op_type &&
IsNthOutput(x, op, argument, nth))
return true;
}
return false;
});
return this;
}
PDNode *PDNode::assert_is_only_input_of_op(const std::string &op_type) {
assert_is_var();
asserts_.emplace_back([=](Node *x) {
for (auto *op : x->outputs) {
if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
op->inputs.size() == 1) {
return true;
}
}
return false;
});
return this;
}
PDNode *PDNode::assert_is_only_output_of_op(const std::string &op_type) {
assert_is_var();
asserts_.emplace_back([=](Node *x) {
for (auto *op : x->inputs) {
if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
op->outputs.size() == 1) {
return true;
}
}
return false;
});
return this;
}
PDNode *PDNode::assert_is_op_output(const std::string &op_type) {
assert_is_var();
asserts_.emplace_back([=](Node *x) {
for (auto *op : x->inputs) {
if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
return true;
}
}
return false;
});
return this;
}
PDNode *PDNode::assert_is_op_output(const std::string &op_type,
const std::string &argument) {
assert_is_var();
assert_is_op_nth_output(op_type, argument, 0);
return this;
}
PDNode *PDNode::assert_is_op_input(const std::string &op_type) {
assert_is_var();
asserts_.emplace_back([=](Node *x) {
for (auto *op : x->outputs) {
if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
return true;
}
}
return false;
});
return this;
}
PDNode *PDNode::assert_is_not_op_input(const std::string &argument) {
assert_is_op();
asserts_.emplace_back([=](Node *x) {
auto &ins = x->Op()->Inputs();
auto iter = ins.find(argument);
return iter == ins.end() || iter->second.empty();
});
return this;
}
PDNode *PDNode::assert_is_op_input(const std::string &op_type,
const std::string &argument) {
assert_is_var();
assert_is_op_nth_input(op_type, argument, 0);
return this;
}
PDNode *PDNode::assert_op_has_n_inputs(const std::string &op_type, size_t n) {
assert_is_op(op_type);
asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
return this;
}
PDNode *PDNode::assert_op_has_n_outputs(const std::string &op_type, size_t n) {
assert_is_op(op_type);
asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
return this;
}
PDNode *PDNode::assert_has_n_inputs(size_t n) {
asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
return this;
}
PDNode *PDNode::assert_has_n_outputs(size_t n) {
asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
return this;
}
PDNode *PDNode::assert_more(PDNode::teller_t &&teller) {
asserts_.emplace_back(std::move(teller));
return this;
}
PDNode *PDNode::assert_is_ops(const std::unordered_set<std::string> &op_types) {
asserts_.emplace_back([op_types](Node *x) {
return x && x->IsOp() && op_types.count(x->Op()->Type());
});
return this;
}
PDNode *PDNode::assert_is_ops_nth_input(
const std::unordered_set<std::string> &op_types,
const std::string &argument, int nth) {
assert_is_var();
assert_is_ops_input(op_types);
asserts_.emplace_back([=](Node *x) {
for (auto *op : x->outputs) {
if (op->IsOp() && op_types.count(op->Op()->Type()) &&
IsNthInput(x, op, argument, nth))
return true;
}
return false;
});
return this;
}
PDNode *PDNode::assert_is_ops_nth_output(
const std::unordered_set<std::string> &op_types,
const std::string &argument, int nth) {
assert_is_var();
asserts_.emplace_back([=](Node *x) {
for (auto *op : x->inputs) {
if (op->IsOp() && op_types.count(op->Op()->Type()) &&
IsNthOutput(x, op, argument, nth))
return true;
}
return false;
});
return this;
}
PDNode *PDNode::assert_is_ops_output(
const std::unordered_set<std::string> &op_types) {
assert_is_var();
asserts_.emplace_back([=](Node *x) {
for (auto *op : x->inputs) {
if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
return true;
}
}
return false;
});
return this;
}
PDNode *PDNode::assert_is_ops_output(
const std::unordered_set<std::string> &op_types,
const std::string &argument) {
assert_is_var();
assert_is_ops_nth_output(op_types, argument, 0);
return this;
}
PDNode *PDNode::assert_is_ops_input(
const std::unordered_set<std::string> &op_types) {
assert_is_var();
asserts_.emplace_back([=](Node *x) {
for (auto *op : x->outputs) {
if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
return true;
}
}
return false;
});
return this;
}
PDNode *PDNode::assert_is_ops_input(
const std::unordered_set<std::string> &op_types,
const std::string &argument) {
assert_is_var();
assert_is_ops_nth_input(op_types, argument, 0);
return this;
}
bool VarLinksToOp(Node *node, const std::string &op_type) {
for (auto *out : node->outputs) {
if (out->IsOp() && out->Op()->Type() == op_type) {
return true;
}
}
return false;
}
bool IsNthInput(Node *var, Node *op, const std::string &argument, size_t nth) {
PADDLE_ENFORCE_EQ(
var->IsVar(), true,
platform::errors::InvalidArgument(
"First parameter of function IsNthInput must be Node::Var"));
PADDLE_ENFORCE_EQ(
op->IsOp(), true,
platform::errors::InvalidArgument(
"Second parameter of function IsNthInput must be Node::Op"));
if (!HasInput(op, argument) || op->Op()->Input(argument).size() <= nth)
return false;
return var->Name() == op->Op()->Input(argument)[nth];
}
bool HasInput(Node *op, const std::string &argument) {
PADDLE_ENFORCE_EQ(
op->IsOp(), true,
platform::errors::InvalidArgument(
"First parameter of function HasInput must be Node::Op"));
auto const &names = op->Op()->InputNames();
if (std::find(names.begin(), names.end(), argument) == names.end())
return false;
return true;
}
bool HasOutput(Node *op, const std::string &argument) {
PADDLE_ENFORCE_EQ(
op->IsOp(), true,
platform::errors::InvalidArgument(
"First parameter of function HasOuput must be Node::Op"));
auto const &names = op->Op()->OutputNames();
if (std::find(names.begin(), names.end(), argument) == names.end())
return false;
return true;
}
bool IsNthOutput(Node *var, Node *op, const std::string &argument, size_t nth) {
PADDLE_ENFORCE_EQ(
var->IsVar(), true,
platform::errors::InvalidArgument(
"First parameter of function IsNthOutput must be Node::Var"));
PADDLE_ENFORCE_EQ(
op->IsOp(), true,
platform::errors::InvalidArgument(
"Second parameter of function IsNthOutput must be Node::Op"));
if (!HasOutput(op, argument) || op->Op()->Output(argument).size() <= nth)
return false;
return var->Name() == op->Op()->Output(argument)[nth];
}
void GraphSafeRemoveNodes(Graph *graph,
const std::unordered_set<const Node *> &nodes) {
for (auto *node : nodes) {
graph->RemoveNode(const_cast<Node *>(node));
}
for (auto *node : graph->Nodes()) {
for (auto it = node->inputs.begin(); it != node->inputs.end();) {
if (nodes.count(*it)) {
it = const_cast<Node *>(node)->inputs.erase(it);
} else {
it++;
}
}
for (auto it = node->outputs.begin(); it != node->outputs.end();) {
if (nodes.count(*it)) {
it = const_cast<Node *>(node)->outputs.erase(it);
} else {
it++;
}
}
}
}
bool VarLinksFromOp(Node *node, const std::string &op_type) {
for (auto *out : node->inputs) {
if (out->IsOp() && out->Op()->Type() == op_type) {
return true;
}
}
return false;
}
PDNode *patterns::ConvBN::operator()(paddle::framework::ir::PDNode *conv_input,
const std::string &conv_type,
bool with_eltwise_add) {
// Create Operators
conv_input->assert_is_op_input(conv_type, "Input");
auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
PDNode *eltwise_op = nullptr;
if (with_eltwise_add) {
eltwise_op =
pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
}
auto *batch_norm_op =
pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
// Create variables
// Conv Filter
auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input(conv_type, "Filter");
auto *conv_out_var = pattern->NewNode(conv_out_repr())
->AsIntermediate()
->assert_is_only_output_of_op(conv_type);
PDNode *eltwise_y_in_var = nullptr;
PDNode *eltwise_out_var = nullptr;
if (with_eltwise_add) {
// Conv output as Bias input
conv_out_var->assert_is_op_input("elementwise_add", "X");
// Bias
eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
->assert_is_op_input("elementwise_add", "Y")
->AsInput();
eltwise_out_var = pattern->NewNode(eltwise_out_repr())
->AsIntermediate()
->assert_is_only_output_of_op("elementwise_add");
} else {
// Conv output as BN input
conv_out_var->assert_is_op_input("batch_norm", "X");
}
// BN Scale
auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("batch_norm", "Scale");
// BN Bias
auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("batch_norm", "Bias");
// BN Mean
auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("batch_norm", "Mean");
// BN Variance
auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("batch_norm", "Variance");
// BN output
auto *bn_out_var = pattern->NewNode(bn_out_repr())
->AsOutput()
->assert_is_op_output("batch_norm");
auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
->AsOutput()
->assert_is_op_output("batch_norm", "MeanOut");
auto *bn_variance_out_var =
pattern->NewNode(bn_variance_out_repr())
->AsOutput()
->assert_is_op_output("batch_norm", "VarianceOut");
auto *bn_saved_mean_var =
pattern->NewNode(bn_saved_mean_repr())
->AsOutput()
->assert_is_op_output("batch_norm", "SavedMean");
auto *bn_saved_variance_var =
pattern->NewNode(bn_saved_variance_repr())
->AsOutput()
->assert_is_op_output("batch_norm", "SavedVariance");
conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
if (with_eltwise_add) {
eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
.LinksTo({eltwise_out_var});
batch_norm_op
->LinksFrom({eltwise_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
bn_variance_var})
.LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
bn_saved_mean_var, bn_saved_variance_var});
} else {
batch_norm_op
->LinksFrom({conv_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
bn_variance_var})
.LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
bn_saved_mean_var, bn_saved_variance_var});
}
return bn_out_var;
}
PDNode *patterns::ConvActivation::operator()(
paddle::framework::ir::PDNode *conv_input, std::string conv_type,
std::string activation_type) {
// Create Operators
conv_input->assert_is_op_input(conv_type, "Input");
auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
auto *activation_op =
pattern->NewNode(activation_repr())->assert_is_op(activation_type);
// Create variables
// Filter
auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input(conv_type, "Filter");
// intermediate variable, will be removed in the IR after fuse.
auto *conv_out_var = pattern->NewNode(conv_out_repr())
->AsIntermediate()
->assert_is_only_output_of_op(conv_type)
->assert_is_op_input(activation_type);
// output
auto *activation_out_var = pattern->NewNode(activation_out_repr())
->AsOutput()
->assert_is_op_output(activation_type);
conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
activation_op->LinksFrom({conv_out_var}).LinksTo({activation_out_var});
return activation_out_var;
}
PDNode *patterns::SeqConvEltAddRelu::operator()(
paddle::framework::ir::PDNode *seqconv_input) {
// Create Operators
seqconv_input->assert_is_op_input("sequence_conv", "X");
auto *seqconv_op = pattern->NewNode(seqconv_repr())
->assert_is_op("sequence_conv")
->assert_op_attr<bool>("paddingTrainable", false)
->assert_op_attr<int>("contextStride", 1);
auto *eltadd_op =
pattern->NewNode(eltadd_repr())->assert_is_op("elementwise_add");
auto *relu_op = pattern->NewNode(relu_repr())->assert_is_op("relu");
// Create variables
// Filter
auto *seqconv_weight_var =
pattern->NewNode(seqconv_weight_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("sequence_conv", "Filter");
// Bias
auto *eltadd_bias_var = pattern->NewNode(eltadd_bias_repr())
->AsInput()
->assert_is_op_input("elementwise_add");
// intermediate variable, will be removed in the IR after fuse.
auto *seqconv_out_var = pattern->NewNode(seqconv_out_repr())
->AsIntermediate()
->assert_is_only_output_of_op("sequence_conv")
->assert_is_op_input("elementwise_add");
auto *eltadd_out_var = pattern->NewNode(eltadd_out_repr())
->AsIntermediate()
->assert_is_only_output_of_op("elementwise_add")
->assert_is_only_input_of_op("relu");
// output
auto *relu_out_var = pattern->NewNode(relu_out_repr())
->AsOutput()
->assert_is_op_output("relu");
seqconv_op->LinksFrom({seqconv_input, seqconv_weight_var})
.LinksTo({seqconv_out_var});
eltadd_op->LinksFrom({seqconv_out_var, eltadd_bias_var})
.LinksTo({eltadd_out_var});
relu_op->LinksFrom({eltadd_out_var}).LinksTo({relu_out_var});
return relu_out_var;
}
PDNode *patterns::FC::operator()(paddle::framework::ir::PDNode *x,
bool with_bias, bool with_relu) {
// Create shared nodes.
x->assert_is_op_input("mul", "X");
auto *mul = pattern->NewNode(mul_repr())->assert_is_op("mul");
auto *mul_w_var = pattern->NewNode(w_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("mul", "Y");
auto *mul_out_var =
pattern->NewNode(mul_out_repr())->assert_is_op_output("mul");
// Add links.
mul->LinksFrom({x, mul_w_var}).LinksTo({mul_out_var});
if (!with_bias) { // not with bias
return mul_out_var;
} else { // with bias
mul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
// Create operators.
auto *elementwise_add = pattern->NewNode(elementwise_add_repr())
->assert_is_op("elementwise_add");
// Create variables.
auto *bias = pattern->NewNode(bias_repr())
->assert_is_op_input("elementwise_add")
->assert_is_persistable_var()
->AsInput();
auto *elementwise_add_out_var =
pattern->NewNode(elementwise_add_out_repr())
->AsOutput()
->assert_is_op_output("elementwise_add");
elementwise_add->LinksFrom({mul_out_var, bias})
.LinksTo({elementwise_add_out_var});
if (!with_relu) {
return elementwise_add_out_var;
} else {
elementwise_add_out_var->AsIntermediate()->assert_is_op_input("relu");
// Create operators.
auto *relu = pattern->NewNode(relu_repr())->assert_is_op("relu");
auto *relu_out_var = pattern->NewNode(relu_out_repr())
->AsOutput()
->assert_is_op_output("relu");
relu->LinksFrom({elementwise_add_out_var}).LinksTo({relu_out_var});
return relu_out_var;
}
}
}
PDNode *patterns::FCMKLDNN::operator()(paddle::framework::ir::PDNode *x,
bool with_bias) {
// Create shared nodes.
x->assert_is_op_input("fc", "Input");
auto *fc_op = pattern->NewNode(fc_repr())->assert_is_op("fc");
// Create variables
// Input
auto *input_var = pattern->NewNode(input_repr())
->AsInput()
->assert_is_op_input("fc", "Input");
// Filter
auto *fc_weight_var = pattern->NewNode(weights_repr())
->AsInput()
->assert_is_op_input("fc", "W");
// Bias
auto *fc_bias_var = pattern->NewNode(bias_repr())
->AsInput()
->assert_is_op_input("fc", "Bias");
// Output
auto *fc_out_var = pattern->NewNode(output_repr())
->AsOutput()
->assert_is_op_output("fc", "Out")
->assert_is_only_output_of_op("fc");
fc_op->LinksFrom({input_var, fc_weight_var, fc_bias_var})
.LinksTo({fc_out_var});
return fc_out_var;
}
PDNode *patterns::FCActOneDNN::operator()(const std::string &act_type) {
auto *fc = pattern->NewNode(fc_repr())->assert_is_op("fc");
auto *fc_out = pattern->NewNode(fc_out_repr())
->assert_is_op_output("fc", "Out")
->assert_is_op_input(act_type);
auto *act =
pattern->NewNode(act_repr())->assert_is_op(act_type)->AsIntermediate();
auto *act_out = pattern->NewNode(act_out_repr())
->assert_is_op_output(act_type, "Out")
->AsOutput();
fc->LinksTo({fc_out});
act->LinksFrom({fc_out}).LinksTo({act_out});
return act_out;
}
PDNode *patterns::Embedding::operator()(PDNode *x) {
x->assert_is_op_input("lookup_table", "Ids");
auto *lookup_table_op =
pattern->NewNode(lookup_table_repr())->assert_is_op("lookup_table");
#define NEW_NODE(arg__, io__) \
auto *arg__ = pattern->NewNode(arg__##_repr()) \
->assert_is_op_##io__("lookup_table", #arg__);
NEW_NODE(W, input);
NEW_NODE(Out, output);
#undef NEW_NODE
lookup_table_op->LinksFrom({x, W});
lookup_table_op->LinksTo({Out});
return Out;
}
PDNode *patterns::LSTM::operator()(PDNode *x) {
x->assert_is_op_input("lstm", "Input");
auto *lstm_op = pattern->NewNode(lstm_repr())->assert_is_op("lstm");
#define NEW_NODE(arg__, io__) \
auto *arg__ = \
pattern->NewNode(arg__##_repr())->assert_is_op_##io__("lstm", #arg__);
// Currently, the H0 and C0 are optional
// TODO(Superjomn) upgrade the fuse framework to support optional.
// NEW_NODE(H0, input);
// NEW_NODE(C0, input);
NEW_NODE(Weight, input);
NEW_NODE(Bias, input);
NEW_NODE(Hidden, output);
NEW_NODE(Cell, output);
NEW_NODE(BatchGate, output);
NEW_NODE(BatchCellPreAct, output);
#undef NEW_NODE
lstm_op->LinksFrom({x, Weight, Bias});
lstm_op->LinksTo({Hidden, Cell, BatchGate, BatchCellPreAct});
return Hidden;
}
PDNode *patterns::GRU::operator()(PDNode *x) {
x->assert_is_op_input("gru", "Input");
auto *gru_op = pattern->NewNode(gru_repr())->assert_is_op("gru");
#define NEW_NODE(arg__, io__) \
auto *arg__ = \
pattern->NewNode(arg__##_repr())->assert_is_op_##io__("gru", #arg__);
NEW_NODE(Weight, input);
// TODO(Superjomn): upgrade the fuse framework to support optional.
// H0 and bias are optional
NEW_NODE(Bias, input); // also optional
// NEW_NODE(H0, input);
NEW_NODE(Hidden, output);
// below are intermediate
NEW_NODE(BatchGate, output);
NEW_NODE(BatchResetHiddenPrev, output);
NEW_NODE(BatchHidden, output);
#undef NEW_NODE
BatchGate->AsIntermediate();
BatchResetHiddenPrev->AsIntermediate();
BatchHidden->AsIntermediate();
gru_op->LinksFrom({x, Weight, Bias});
gru_op->LinksTo({Hidden, BatchGate, BatchResetHiddenPrev, BatchHidden});
return Hidden;
}
PDNode *patterns::ActElewiseAdd::operator()(
paddle::framework::ir::PDNode *in_var,
std::unordered_set<std::string> act_types) {
in_var->assert_is_ops_input(act_types, "X");
auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
auto *act_out_var = pattern->NewNode(act_out_repr())
->assert_is_not_ctrl_var()
->assert_is_ops_output(act_types);
act_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
auto *ele_x_var = pattern->NewNode(ele_x_repr())
->assert_is_not_ctrl_var()
->assert_is_op_input("elementwise_add")
->AsInput();
auto *elementwise_add =
pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");
auto *elewise_add_out = pattern->NewNode(elewise_add_out_repr())
->AsOutput()
->assert_is_op_output("elementwise_add", "Out");
act->LinksFrom({in_var}).LinksTo({act_out_var});
elementwise_add->LinksFrom({act_out_var, ele_x_var})
.LinksTo({elewise_add_out});
return elewise_add_out;
}
PDNode *patterns::BatchNormAct::operator()(
paddle::framework::ir::PDNode *bn_x_var,
std::unordered_set<std::string> act_types) {
auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
->assert_is_op_input("batch_norm", "Scale");
auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
->assert_is_op_input("batch_norm", "Bias");
auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
->assert_is_op_input("batch_norm", "Variance");
auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
->assert_is_op_input("batch_norm", "Mean");
auto *bn = pattern->NewNode(batch_norm_repr())
->assert_is_op("batch_norm")
->assert_is_not_op_input("MomentumTensor")
->assert_op_attr<bool>("is_test", false)
->assert_op_attr<bool>("use_global_stats", false)
->assert_op_attr<std::string>("data_layout", "NHWC");
auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
->assert_is_op_output("batch_norm", "MeanOut");
auto *bn_variance_out_var =
pattern->NewNode(bn_variance_out_repr())
->assert_is_op_output("batch_norm", "VarianceOut");
auto *bn_saved_variance_var =
pattern->NewNode(bn_saved_variance_repr())
->assert_is_op_output("batch_norm", "SavedVariance");
auto *bn_saved_mean_var =
pattern->NewNode(bn_saved_mean_repr())
->assert_is_op_output("batch_norm", "SavedMean");
auto *bn_reserve_space =
pattern->NewNode(bn_reserve_space_repr())
->assert_is_op_output("batch_norm", "ReserveSpace");
auto *bn_out_var = pattern->NewNode(bn_out_repr())
->assert_is_op_output("batch_norm", "Y")
->assert_has_n_outputs(1);
bn_out_var->AsIntermediate()->assert_is_ops_input(act_types);
auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
auto *act_out_var =
pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");
bn->LinksFrom(
{bn_x_var, bn_scale_var, bn_bias_var, bn_variance_var, bn_mean_var})
.LinksTo({bn_mean_out_var, bn_variance_out_var, bn_saved_variance_var,
bn_saved_mean_var, bn_reserve_space, bn_out_var});
act->LinksFrom({bn_out_var}).LinksTo({act_out_var});
return act_out_var;
}
PDNode *patterns::BatchNormActGrad::operator()(
paddle::framework::ir::PDNode *d_act_out_var,
std::unordered_set<std::string> act_grad_types) {
auto *act_grad =
pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
auto *bn_grad = pattern->NewNode(batch_norm_grad_repr())
->assert_is_op("batch_norm_grad")
->assert_op_attr<bool>("use_global_stats", false)
->assert_op_attr<std::string>("data_layout", "NHWC");
auto *act_out_var = pattern->NewNode(act_out_repr())
->assert_is_ops_input(act_grad_types, "Out");
auto *d_intermediate_var =
pattern->NewNode(d_itermediate_out_repr())
->assert_is_ops_output(act_grad_types, GradVarName("X"))
->assert_has_n_outputs(1);
auto *bn_x_var = pattern->NewNode(bn_x_repr())
->assert_is_op_input("batch_norm_grad", "X")
->assert_var_dtype(proto::VarType::FP16);
auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
->assert_is_op_input("batch_norm_grad", "Scale");
auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
->assert_is_op_input("batch_norm_grad", "Bias");
auto *bn_saved_mean_var =
pattern->NewNode(bn_saved_mean_repr())
->assert_is_op_input("batch_norm_grad", "SavedMean");
auto *bn_saved_variance_var =
pattern->NewNode(bn_saved_variance_repr())
->assert_is_op_input("batch_norm_grad", "SavedVariance");
// ReserveSpace as the output is equal to:
// data_layout == 'NHWC' && FLAGS_cudnn_batchnorm_spatial_persistent == true
auto *bn_reserve_space =
pattern->NewNode(bn_reserve_space_repr())
->assert_is_op_input("batch_norm_grad", "ReserveSpace");
auto *d_bn_x_var =
pattern->NewNode(d_bn_x_repr())
->assert_is_not_ctrl_var()
->assert_is_op_output("batch_norm_grad", GradVarName("X"));
auto *d_bn_scale_var =
pattern->NewNode(d_bn_scale_repr())
->assert_is_not_ctrl_var()
->assert_is_op_output("batch_norm_grad", GradVarName("Scale"));
auto *d_bn_bias_var =
pattern->NewNode(d_bn_bias_repr())
->assert_is_not_ctrl_var()
->assert_is_op_output("batch_norm_grad", GradVarName("Bias"));
act_grad->LinksFrom({d_act_out_var, act_out_var})
.LinksTo({d_intermediate_var});
bn_grad
->LinksFrom({bn_x_var, d_intermediate_var, bn_scale_var, bn_bias_var,
bn_saved_mean_var, bn_saved_variance_var, bn_reserve_space})
.LinksTo({d_bn_x_var, d_bn_scale_var, d_bn_bias_var});
return bn_grad;
}
PDNode *patterns::BatchNormActOneDNN::operator()(const std::string &act_type) {
auto *bn_x = pattern->NewNode(bn_in_repr())
->AsInput()
->assert_is_op_input("batch_norm", "X");
auto *bn = pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
auto *bn_out = pattern->NewNode(bn_out_repr())
->assert_is_op_output("batch_norm", "Y")
->assert_is_op_input(act_type);
auto *act =
pattern->NewNode(act_repr())->assert_is_op(act_type)->AsIntermediate();
auto *act_out = pattern->NewNode(act_out_repr())
->assert_is_op_output(act_type, "Out")
->AsOutput();
bn->LinksFrom({bn_x}).LinksTo({bn_out});
act->LinksFrom({bn_out}).LinksTo({act_out});
return act_out;
}
PDNode *patterns::BatchNormAddAct::operator()(
paddle::framework::ir::PDNode *bn_x_var,
std::unordered_set<std::string> act_types) {
bn_x_var->assert_is_op_input("batch_norm", "X")
->assert_var_dtype(proto::VarType::FP16);
auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
->assert_is_op_input("batch_norm", "Scale");
auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
->assert_is_op_input("batch_norm", "Bias");
auto *bn = pattern->NewNode(batch_norm_repr())
->assert_is_op("batch_norm")
->assert_is_not_op_input("MomentumTensor")
->assert_op_attr<bool>("is_test", false)
->assert_op_attr<bool>("use_global_stats", false)
->assert_op_attr<std::string>("data_layout", "NHWC");
auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
->assert_is_op_output("batch_norm", "MeanOut");
auto *bn_variance_out_var =
pattern->NewNode(bn_variance_out_repr())
->assert_is_op_output("batch_norm", "VarianceOut");
auto *bn_saved_variance_var =
pattern->NewNode(bn_saved_variance_repr())
->assert_is_op_output("batch_norm", "SavedVariance");
auto *bn_saved_mean_var =
pattern->NewNode(bn_saved_mean_repr())
->assert_is_op_output("batch_norm", "SavedMean");
auto *bn_reserve_space =
pattern->NewNode(bn_reserve_space_repr())
->assert_is_op_output("batch_norm", "ReserveSpace");
auto *bn_out_var = pattern->NewNode(bn_out_repr())
->assert_is_op_output("batch_norm", "Y")
->assert_var_dtype(proto::VarType::FP16);
bn_out_var->assert_is_op_input("elementwise_add");
auto *elewise_add =
pattern->NewNode(elewise_add_repr())->assert_is_op("elementwise_add");
auto *elewise_add_in_var = pattern->NewNode(elewise_add_in_repr())
->assert_is_not_ctrl_var()
->assert_is_op_input("elementwise_add")
->assert_var_dtype(proto::VarType::FP16);
auto *elewise_add_out_var =
pattern->NewNode(elewise_add_out_repr())
->assert_is_op_output("elementwise_add", "Out")
->assert_has_n_outputs(1);
elewise_add_out_var->AsIntermediate()->assert_is_ops_input(act_types);
auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
auto *act_out_var =
pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");
bn->LinksFrom({bn_x_var, bn_scale_var, bn_bias_var})
.LinksTo({bn_mean_out_var, bn_variance_out_var, bn_saved_variance_var,
bn_saved_mean_var, bn_reserve_space, bn_out_var});
elewise_add->LinksFrom({elewise_add_in_var, bn_out_var})
.LinksTo({elewise_add_out_var});
act->LinksFrom({elewise_add_out_var}).LinksTo({act_out_var});
return act_out_var;
}
PDNode *patterns::BatchNormAddActGrad::operator()(
paddle::framework::ir::PDNode *d_act_out_var,
std::unordered_set<std::string> act_grad_types) {
auto *act_grad =
pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
auto *elewise_add_grad = pattern->NewNode(elewise_add_grad_repr())
->assert_is_op("elementwise_add_grad");
auto *bn_grad = pattern->NewNode(batch_norm_grad_repr())
->assert_is_op("batch_norm_grad")
->assert_op_attr<bool>("use_global_stats", false)
->assert_op_attr<std::string>("data_layout", "NHWC");
auto *act_out_var = pattern->NewNode(act_out_repr())
->assert_is_ops_input(act_grad_types, "Out");
auto *d_act_x_var =
pattern->NewNode(d_act_x_repr())
->assert_is_ops_output(act_grad_types, GradVarName("X"))
->assert_has_n_outputs(1); // d_act_x
d_act_x_var->AsIntermediate()->assert_is_op_input("elementwise_add_grad");
auto *d_elewise_add_in_var =
pattern->NewNode(d_elewise_add_in_repr())
->assert_is_not_ctrl_var()
->assert_is_op_output("elementwise_add_grad")
->assert_var_dtype(proto::VarType::FP16); // d_add_in_1
auto *d_bn_out_var =
pattern->NewNode(d_bn_out_repr())
->assert_is_not_ctrl_var()
->assert_is_op_output("elementwise_add_grad")
->assert_var_dtype(proto::VarType::FP16); // d_add_in_2
d_bn_out_var->assert_is_op_input("batch_norm_grad", GradVarName("Y"));
auto *bn_x_var = pattern->NewNode(bn_x_repr())
->assert_is_op_input("batch_norm_grad", "X")
->assert_var_dtype(proto::VarType::FP16);
auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
->assert_is_op_input("batch_norm_grad", "Scale");
auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
->assert_is_op_input("batch_norm_grad", "Bias");
auto *bn_saved_mean_var =
pattern->NewNode(bn_saved_mean_repr())
->assert_is_op_input("batch_norm_grad", "SavedMean");
auto *bn_saved_variance_var =
pattern->NewNode(bn_saved_variance_repr())
->assert_is_op_input("batch_norm_grad", "SavedVariance");
auto *bn_reserve_space =
pattern->NewNode(bn_reserve_space_repr())
->assert_is_op_input("batch_norm_grad", "ReserveSpace");
auto *d_bn_x_var =
pattern->NewNode(d_bn_x_repr())
->assert_is_not_ctrl_var()
->assert_is_op_output("batch_norm_grad", GradVarName("X"))
->assert_var_dtype(proto::VarType::FP16);
auto *d_bn_scale_var =
pattern->NewNode(d_bn_scale_repr())
->assert_is_not_ctrl_var()
->assert_is_op_output("batch_norm_grad", GradVarName("Scale"));
auto *d_bn_bias_var =
pattern->NewNode(d_bn_bias_repr())
->assert_is_not_ctrl_var()
->assert_is_op_output("batch_norm_grad", GradVarName("Bias"));
act_grad->LinksFrom({d_act_out_var, act_out_var}).LinksTo({d_act_x_var});
elewise_add_grad->LinksFrom({d_act_x_var})
.LinksTo({d_elewise_add_in_var, d_bn_out_var});
bn_grad
->LinksFrom({bn_x_var, d_bn_out_var, bn_scale_var, bn_bias_var,
bn_saved_mean_var, bn_saved_variance_var, bn_reserve_space})
.LinksTo({d_bn_x_var, d_bn_scale_var, d_bn_bias_var});
return bn_grad;
}
PDNode *patterns::ElewiseAddAct::operator()(
paddle::framework::ir::PDNode *ele_x_var,
std::unordered_set<std::string> act_types) {
auto *ele_y_var = pattern->NewNode(ele_y_repr())
->assert_is_op_input("elementwise_add", "Y");
auto *ele_add =
pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");
auto *ele_out_var = pattern->NewNode(elewise_add_out_repr())
->assert_is_op_output("elementwise_add", "Out");
ele_out_var->AsIntermediate()->assert_is_ops_input(act_types);
auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
auto *act_out_var =
pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");
ele_add->LinksFrom({ele_x_var, ele_y_var}).LinksTo({ele_out_var});
act->LinksFrom({ele_out_var}).LinksTo({act_out_var});
return act_out_var;
}
PDNode *patterns::ElewiseAddActInplaceGrad::operator()(
paddle::framework::ir::PDNode *d_act_out_var,
std::unordered_set<std::string> act_types) {
// act_grad: in["Out", "Out@GRAD"], out["X@GRAD"]
// ele_add_grad: in["Y", "Out@GRAD"], out["X@GRAD", "Y@GRAD"]
auto *act_grad = pattern->NewNode(act_grad_repr())->assert_is_ops(act_types);
auto *act_out_var =
pattern->NewNode(act_out_repr())->assert_is_ops_input(act_types, "Out");
auto *d_intermediate_var =
pattern->NewNode(d_itermediate_out_repr())
->assert_is_ops_output(act_types, GradVarName("X"));
act_grad->LinksFrom({d_act_out_var, act_out_var})
.LinksTo({d_intermediate_var});
auto *ele_y_var = pattern->NewNode(ele_y_repr())
->assert_is_not_ctrl_var()
->assert_is_op_input("elementwise_add_grad", "Y");
auto *ele_add_grad = pattern->NewNode(ele_add_grad_repr())
->assert_is_op("elementwise_add_grad");
auto *d_ele_x_var =
pattern->NewNode(d_ele_x_repr())
->assert_is_not_ctrl_var()
->assert_is_op_output("elementwise_add_grad", GradVarName("X"));
auto *d_ele_y_var =
pattern->NewNode(d_ele_y_repr())
->assert_is_not_ctrl_var()
->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));
ele_add_grad->LinksFrom({d_intermediate_var, ele_y_var})
.LinksTo({d_ele_x_var, d_ele_y_var});
return ele_add_grad;
}
// conv_type: conv2d, conv3d, conv2d_transpose
PDNode *patterns::ConvBias::operator()(
paddle::framework::ir::PDNode *conv_input, std::string conv_type) {
// Create Operators
conv_input->assert_is_op_input(conv_type, "Input");
auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
auto *eltiwse_op =
pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
// Create variables
// Filter
auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input(conv_type, "Filter");
// intermediate variable, will be removed in the IR after fuse.
auto *conv_out_var = pattern->NewNode(conv_out_repr())
->AsIntermediate()
->assert_is_only_output_of_op(conv_type)
->assert_is_op_input("elementwise_add");
// Bias stored in elementwise_add
auto *eltwise_bias_var = pattern->NewNode(eltwise_bias_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("elementwise_add", "Y");
// output
auto *eltwise_out_var = pattern->NewNode(eltwise_out_repr())
->AsOutput()
->assert_is_op_output("elementwise_add");
conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
eltiwse_op->LinksFrom({conv_out_var, eltwise_bias_var})
.LinksTo({eltwise_out_var});
return eltwise_out_var;
}
PDNode *patterns::Conv::operator()() {
auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
auto input_var = pattern->NewNode(conv_input_repr())
->AsInput()
->assert_is_op_input("conv2d", "Input");
auto filter_var = pattern->NewNode(conv_filter_repr())
->AsInput()
->assert_is_op_input("conv2d", "Filter");
auto output_var = pattern->NewNode(conv_output_repr())
->AsOutput()
->assert_is_op_output("conv2d", "Output");
conv_op->LinksFrom({input_var, filter_var}).LinksTo({output_var});
return output_var;
}
PDNode *patterns::Transpose::operator()() {
auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();
auto transpose_op =
pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");
auto transpose_in = pattern->NewNode(transpose_in_repr())
->AsInput()
->assert_is_op_input("transpose2");
auto transpose_out = pattern->NewNode(transpose_out_repr())
->AsOutput()
->assert_is_op_output("transpose2", "Out");
auto next_op = pattern->NewNode(next_op_repr())->assert_is_op();
prev_op->LinksTo({transpose_in});
transpose_op->LinksFrom({transpose_in}).LinksTo({transpose_out});
next_op->LinksFrom({transpose_out});
return transpose_out;
}
PDNode *patterns::Reshape::operator()() {
auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();
auto reshape_op =
pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2");
auto reshape_in = pattern->NewNode(reshape_in_repr())
->AsInput()
->assert_is_op_input("reshape2", "X");
auto reshape_out = pattern->NewNode(reshape_out_repr())
->AsOutput()
->assert_is_op_output("reshape2", "Out");
auto next_op = pattern->NewNode(next_op_repr())->assert_is_op();
prev_op->LinksTo({reshape_in});
reshape_op->LinksFrom({reshape_in}).LinksTo({reshape_out});
next_op->LinksFrom({reshape_out});
return reshape_out;
}
PDNode *patterns::Matmul::operator()() {
auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
->AsInput()
->assert_is_op_input("matmul", "X");
auto matmul_in_y = pattern->NewNode(matmul_in_y_repr())
->AsInput()
->assert_is_op_input("matmul", "Y");
auto matmul_out = pattern->NewNode(matmul_out_repr())
->AsOutput()
->assert_is_op_output("matmul", "Out");
matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
return matmul_out;
}
PDNode *patterns::Squeeze2Matmul::operator()() {
auto squeeze2_in_x = pattern->NewNode(squeeze2_in_x_repr())
->assert_is_op_input("squeeze2", "X")
->AsInput();
auto squeeze2_op =
pattern->NewNode(squeeze2_op_repr())->assert_is_op("squeeze2");
auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
->assert_is_op_output("squeeze2", "Out")
->assert_is_op_input("matmul", "X");
auto matmul_in_y =
pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
auto matmul_out = pattern->NewNode(matmul_out_repr())
->AsOutput()
->assert_is_op_output("matmul", "Out");
squeeze2_op->LinksFrom({squeeze2_in_x}).LinksTo({matmul_in_x});
matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
return matmul_out;
}
PDNode *patterns::Reshape2Matmul::operator()() {
auto reshape2_in_x = pattern->NewNode(reshape2_in_x_repr())
->assert_is_op_input("reshape2", "X")
->AsInput();
auto reshape2_op =
pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2");
auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
->assert_is_op_output("reshape2", "Out")
->assert_is_op_input("matmul", "X");
auto matmul_in_y =
pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
auto matmul_out = pattern->NewNode(matmul_out_repr())
->AsOutput()
->assert_is_op_output("matmul", "Out");
reshape2_op->LinksFrom({reshape2_in_x}).LinksTo({matmul_in_x});
matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
return matmul_out;
}
PDNode *patterns::MatmulWithInputOps::operator()() {
auto prev_op_x = pattern->NewNode(prev_op_x_repr())->assert_is_op();
auto prev_op_y = pattern->NewNode(prev_op_y_repr())->assert_is_op();
auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
->AsInput()
->assert_is_op_input("matmul", "X");
auto matmul_in_y = pattern->NewNode(matmul_in_y_repr())
->AsInput()
->assert_is_op_input("matmul", "Y");
auto matmul_out = pattern->NewNode(matmul_out_repr())
->AsOutput()
->assert_is_op_output("matmul", "Out");
prev_op_x->LinksTo({matmul_in_x});
prev_op_y->LinksTo({matmul_in_y});
matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
return matmul_out;
}
PDNode *patterns::Flatten2Matmul::operator()() {
auto flatten2_in_x = pattern->NewNode(flatten2_in_x_repr())
->assert_is_op_input("flatten2", "X")
->AsInput();
auto flatten2_op =
pattern->NewNode(flatten2_op_repr())->assert_is_op("flatten2");
auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
->assert_is_op_output("flatten2", "Out")
->assert_is_op_input("matmul", "X");
auto matmul_in_y =
pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
auto matmul_out = pattern->NewNode(matmul_out_repr())
->AsOutput()
->assert_is_op_output("matmul", "Out");
flatten2_op->LinksFrom({flatten2_in_x}).LinksTo({matmul_in_x});
matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
return matmul_out;
}
PDNode *patterns::ConvResidual::operator()(bool with_residual_data) {
auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
if (!with_residual_data) {
conv_op->assert_more([&](Node *x) {
auto node_names = x->Op()->InputNames();
if (!HasInput(x, "ResidualData") ||
x->Op()->Input("ResidualData").size() == 0)
return true;
return false;
});
}
auto input_var = pattern->NewNode(conv_input_repr())
->AsInput()
->assert_is_op_input("conv2d", "Input");
auto filter_var = pattern->NewNode(conv_filter_repr())
->AsInput()
->assert_is_op_input("conv2d", "Filter");
auto output_var = pattern->NewNode(conv_output_repr())
->AsOutput()
->assert_is_op_output("conv2d", "Output");
std::vector<PDNode *> links_from{input_var, filter_var};
if (with_residual_data) {
auto res_conn_var = pattern->NewNode(conv_residual_data_repr())
->AsInput()
->assert_is_op_input("conv2d", "ResidualData");
links_from.push_back(res_conn_var);
}
conv_op->LinksFrom(links_from).LinksTo({output_var});
return output_var;
}
PDNode *patterns::Pool::operator()() {
auto pool_op = pattern->NewNode(pool_op_repr())->assert_is_op("pool2d");
auto input_var = pattern->NewNode(pool_input_repr())
->AsInput()
->assert_is_op_input("pool2d", "X");
auto output_var = pattern->NewNode(pool_output_repr())
->AsOutput()
->assert_is_op_output("pool2d", "Out");
pool_op->LinksFrom({input_var}).LinksTo({output_var});
return output_var;
}
PDNode *patterns::ElementwiseAdd::operator()(PDNode *x_var, PDNode *y_var) {
auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
->assert_is_op("elementwise_add");
x_var->AsInput()->assert_is_op_input("elementwise_add", "X");
y_var->AsInput()->assert_is_op_input("elementwise_add", "Y");
auto out_var = pattern->NewNode(elementwise_add_out_repr())
->AsOutput()
->assert_is_op_output("elementwise_add", "Out");
elementwise_add_op->LinksFrom({x_var, y_var});
elementwise_add_op->LinksTo({out_var});
return out_var;
}
PDNode *patterns::Concat::operator()() {
auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat");
auto output_var = pattern->NewNode(concat_out_repr())
->AsOutput()
->assert_is_op_output("concat", "Out");
concat_op->LinksTo({output_var});
return output_var;
}
PDNode *patterns::ConcatReLU::operator()() {
auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat");
auto relu_op = pattern->NewNode(relu_op_repr())->assert_is_op("relu");
auto concat_out =
pattern->NewNode(concat_out_repr())->assert_is_op_output("concat", "Out");
auto relu_out = pattern->NewNode(relu_out_repr())
->AsOutput()
->assert_is_op_output("relu", "Out");
concat_op->LinksTo({concat_out});
relu_op->LinksFrom({concat_out}).LinksTo({relu_out});
return relu_out;
}
PDNode *patterns::ConvConcatReLU::operator()() {
auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat");
auto relu_op = pattern->NewNode(relu_op_repr())->assert_is_op("relu");
auto conv_out = pattern->NewNode(conv_out_repr())
->assert_is_op_output("conv2d", "Output");
auto concat_out = pattern->NewNode(concat_out_repr())
->assert_is_op_output("concat", "Out")
->assert_is_op_input("relu", "X");
auto relu_out = pattern->NewNode(relu_out_repr())
->AsOutput()
->assert_is_op_output("relu", "Out");
conv_op->LinksTo({conv_out});
concat_op->LinksFrom({conv_out}).LinksTo({concat_out});
relu_op->LinksFrom({concat_out}).LinksTo({relu_out});
return relu_out;
}
PDNode *patterns::OpRequant::operator()() {
auto any_op = pattern->NewNode(any_op_repr())
->assert_is_op()
->assert_more([&](Node *node) {
return node->Op()->HasAttr("Scale_out") ? true : false;
});
auto requant_in = pattern->NewNode(requant_in_repr())
->assert_is_op_input("requantize", "Input");
auto requant_op =
pattern->NewNode(requant_op_repr())->assert_is_op("requantize");
auto requant_out = pattern->NewNode(requant_out_repr())
->AsOutput()
->assert_is_op_output("requantize", "Output");
any_op->LinksTo({requant_in});
requant_op->LinksFrom({requant_in}).LinksTo({requant_out});
return requant_out;
}
PDNode *patterns::RequantOp::operator()() {
auto requant_in = pattern->NewNode(requant_in_repr())
->assert_is_op_input("requantize", "Input");
auto requant_op =
pattern->NewNode(requant_op_repr())->assert_is_op("requantize");
auto requant_out = pattern->NewNode(requant_out_repr())
->AsOutput()
->assert_is_op_output("requantize", "Output");
auto any_op = pattern->NewNode(any_op_repr())
->assert_is_op()
->assert_more([&](Node *node) {
return (node->Op()->HasAttr("Scale_in") ||
node->Op()->HasAttr("Scale_x") ||
node->Op()->HasAttr("Scale_y"));
});
requant_op->LinksFrom({requant_in}).LinksTo({requant_out});
any_op->LinksFrom({requant_out});
return any_op;
}
PDNode *patterns::OpDequant::operator()() {
auto any_op = pattern->NewNode(any_op_repr())
->assert_is_op()
->assert_more([&](Node *node) {
return (node->Op()->Type() == "matmul" ||
node->Op()->Type() == "conv2d" ||
node->Op()->Type() == "fc");
});
auto dequant_in = pattern->NewNode(dequant_in_repr())
->assert_is_op_input("dequantize", "Input");
auto dequant_op =
pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");
auto dequant_out = pattern->NewNode(dequant_out_repr())
->AsOutput()
->assert_is_op_output("dequantize", "Output");
any_op->LinksTo({dequant_in});
dequant_op->LinksFrom({dequant_in}).LinksTo({dequant_out});
return dequant_out;
}
PDNode *patterns::DequantScale::operator()() {
// Create Operators
auto dequant_op =
pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");
auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");
auto dequant_out = pattern->NewNode(dequant_out_repr())
->AsOutput()
->assert_is_op_output("dequantize", "Output");
auto scale_out = pattern->NewNode(scale_out_repr())
->AsOutput()
->assert_is_op_output("scale", "Out");
dequant_op->LinksTo({dequant_out});
scale_op->LinksFrom({dequant_out}).LinksTo({scale_out});
return scale_out;
}
PDNode *patterns::ScaleMatmul::operator()() {
auto scale_in = pattern->NewNode(scale_in_repr())
->AsInput()
->assert_is_op_input("scale", "X");
auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");
auto scale_out = pattern->NewNode(scale_out_repr())
->AsOutput()
->assert_is_op_output("scale", "Out");
auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
scale_op->LinksFrom({scale_in}).LinksTo({scale_out});
matmul_op->LinksFrom({scale_out});
return matmul_op;
}
PDNode *patterns::PriorBox::operator()() {
auto prior_box_op =
pattern->NewNode(prior_box_op_repr())->assert_is_op("prior_box");
auto input_var = pattern->NewNode(prior_box_input_repr())
->AsInput()
->assert_is_op_input("prior_box", "Input");
auto image_var = pattern->NewNode(prior_box_image_repr())
->AsInput()
->assert_is_op_input("prior_box", "Image");
auto boxes_var = pattern->NewNode(prior_box_boxes_repr())
->AsOutput()
->assert_is_op_output("prior_box", "Boxes");
auto variances_var = pattern->NewNode(prior_box_variances_repr())
->AsOutput()
->assert_is_op_output("prior_box", "Variances");
prior_box_op->LinksFrom({input_var, image_var})
.LinksTo({boxes_var, variances_var});
return boxes_var;
}
std::unordered_set<std::string> conv_act_set({"identity", "relu"});
PDNode *patterns::ConvElementwiseaddAct::operator()(PDNode *conv_in) {
conv_in->AsInput();
auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
auto conv_out = pattern->NewNode(conv_out_repr())
->assert_is_op_output("conv2d")
->assert_is_op_input("elementwise_add", "X")
->AsIntermediate();
auto conv_filter = pattern->NewNode(conv_filter_repr())
->assert_is_op_input("conv2d", "Filter")
->AsInput();
auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
->assert_is_op("elementwise_add");
auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
->assert_is_persistable_var()
->assert_is_op_input("elementwise_add", "Y")
->AsInput();
auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
->assert_is_op_output("elementwise_add")
->AsIntermediate();
auto act_op = pattern->NewNode(act_op_repr())
->assert_is_op()
->assert_more([&](Node *node) {
auto op_type = node->Name();
return conv_act_set.count(op_type);
});
auto act_out = pattern->NewNode(act_out_repr())
->assert_is_var()
// is activation op's output.
->assert_more([&](Node *node) {
for (auto *in_op : node->inputs) {
if (conv_act_set.count(in_op->Name())) {
return true;
}
}
return false;
})
->AsOutput();
conv_op->LinksFrom({conv_in, conv_filter});
conv_out->LinksFrom({conv_op});
elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
.LinksTo({elementwise_add_out});
act_op->LinksFrom({elementwise_add_out}).LinksTo({act_out});
return act_out;
}
PDNode *patterns::ConvElementwiseadd2Act::operator()(PDNode *conv_in) {
auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
auto conv_filter = pattern->NewNode(conv_filter_repr())
->assert_is_op_input("conv2d", "Filter")
->AsInput();
auto conv_out = pattern->NewNode(conv_out_repr())
->assert_is_op_output("conv2d")
->assert_is_op_input("elementwise_add", "X")
->AsIntermediate();
auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
->assert_is_op("elementwise_add");
auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
->assert_is_persistable_var()
->assert_is_op_input("elementwise_add", "Y")
->AsInput();
auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
->assert_is_op_output("elementwise_add")
->assert_is_op_input("elementwise_add", "Y")
->AsIntermediate();
auto elementwise_add_op_1 = pattern->NewNode(elementwise_add_op_1_repr())
->assert_is_op("elementwise_add");
auto elementwise_add_in_y_1 = pattern->NewNode(elementwise_add_in_y_1_repr())
->assert_is_op_input("elementwise_add", "X")
->AsInput();
auto elementwise_add_out_1 = pattern->NewNode(elementwise_add_out_1_repr())
->assert_is_op_output("elementwise_add")
->AsIntermediate();
auto act_op = pattern->NewNode(act_op_repr())
->assert_is_op()
->assert_more([&](Node *node) {
auto op_type = node->Name();
return conv_act_set.count(op_type);
});
auto act_out = pattern->NewNode(act_out_repr())
->assert_is_var()
// is activation op's output.
->assert_more([&](Node *node) {
for (auto *in_op : node->inputs) {
if (conv_act_set.count(in_op->Name())) {
return true;
}
}
return false;
})
->AsOutput();
conv_op->LinksFrom({conv_in, conv_filter}).LinksTo({conv_out});
elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
.LinksTo({elementwise_add_out});
elementwise_add_op_1->LinksFrom({elementwise_add_out, elementwise_add_in_y_1})
.LinksTo({elementwise_add_out_1});
act_op->LinksFrom({elementwise_add_out_1}).LinksTo({act_out});
return act_out;
}
PDNode *patterns::ConvElementwiseadd::operator()(PDNode *conv_in) {
conv_in->AsInput();
auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
auto conv_out = pattern->NewNode(conv_out_repr())
->assert_is_op_output("conv2d")
->assert_is_op_input("elementwise_add", "X")
->AsIntermediate();
auto conv_filter = pattern->NewNode(conv_filter_repr())
->assert_is_op_input("conv2d", "Filter")
->AsInput();
auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
->assert_is_op("elementwise_add");
auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
->assert_is_persistable_var()
->assert_is_op_input("elementwise_add", "Y")
->AsInput();
auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
->assert_is_op_output("elementwise_add")
->AsOutput();
conv_op->LinksFrom({conv_in, conv_filter});
conv_out->LinksFrom({conv_op});
elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
.LinksTo({elementwise_add_out});
return elementwise_add_out;
}
PDNode *patterns::ConvAffineChannel::operator()(
paddle::framework::ir::PDNode *conv_input, bool with_eltwise_add) {
// Create Operators
conv_input->assert_is_op_input("conv2d", "Input");
auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");
PDNode *eltwise_op = nullptr;
if (with_eltwise_add) {
eltwise_op =
pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
}
auto *affine_channel_op =
pattern->NewNode(affine_channel_repr())->assert_is_op("affine_channel");
// Create variables
// Conv Filter
auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("conv2d", "Filter");
auto *conv_out_var = pattern->NewNode(conv_out_repr())
->AsIntermediate()
->assert_is_only_output_of_op("conv2d");
PDNode *eltwise_y_in_var = nullptr;
PDNode *eltwise_out_var = nullptr;
if (with_eltwise_add) {
// Conv output as Bias input
conv_out_var->assert_is_op_input("elementwise_add", "X");
// Bias
eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
->assert_is_op_input("elementwise_add", "Y")
->AsInput();
eltwise_out_var = pattern->NewNode(eltwise_out_repr())
->AsIntermediate()
->assert_is_only_output_of_op("elementwise_add");
} else {
// Conv output as AffineChannel input
conv_out_var->assert_is_op_input("affine_channel", "X");
}
// AC Scale
auto *ac_scale_var = pattern->NewNode(ac_scale_repr())
->AsInput()
->assert_is_persistable_var()
->assert_has_n_outputs(1)
->assert_is_op_input("affine_channel", "Scale");
// AC Bias
auto *ac_bias_var = pattern->NewNode(ac_bias_repr())
->AsInput()
->assert_is_persistable_var()
->assert_has_n_outputs(1)
->assert_is_op_input("affine_channel", "Bias");
// AC output
auto *ac_out_var = pattern->NewNode(ac_out_repr())
->AsOutput()
->assert_is_op_output("affine_channel");
conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
if (with_eltwise_add) {
eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
.LinksTo({eltwise_out_var});
affine_channel_op->LinksFrom({eltwise_out_var, ac_scale_var, ac_bias_var})
.LinksTo({ac_out_var});
} else {
affine_channel_op->LinksFrom({conv_out_var, ac_scale_var, ac_bias_var})
.LinksTo({ac_out_var});
}
return ac_out_var;
}
PDNode *patterns::DequantQuantAny::operator()() {
auto *dequant_in = pattern->NewNode(dequant_in_repr())
->AsInput()
->assert_is_op_input("dequantize", "Input");
auto *dequant_op =
pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");
auto *dequant_out = pattern->NewNode(dequant_out_repr())
->AsOutput()
->assert_is_op_output("dequantize", "Output");
auto *quant_op = pattern->NewNode(quant_op_repr())
->assert_is_op("quantize")
->AsIntermediate();
auto *quant_out = pattern->NewNode(quant_out_repr())
->AsOutput()
->assert_is_op_output("quantize");
auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();
dequant_op->LinksFrom({dequant_in}).LinksTo({dequant_out});
quant_op->LinksFrom({dequant_out}).LinksTo({quant_out});
next_op->LinksFrom({quant_out});
return quant_out;
}
PDNode *patterns::DequantAny::operator()() {
auto *dequant_op =
pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");
auto *dequant_out = pattern->NewNode(dequant_out_repr())
->AsOutput()
->assert_is_op_output("dequantize", "Output");
auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();
dequant_op->LinksTo({dequant_out});
next_op->LinksFrom({dequant_out});
return dequant_out;
}
PDNode *patterns::MultipleQuantize::operator()() {
auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput();
// find nodes that are inputs to quantize operators
prev_out->assert_more([&](Node *node) {
int counter = std::count_if(
node->outputs.begin(), node->outputs.end(), [&](Node const *iter) {
return iter && iter->IsOp() && iter->Op()->Type() == "quantize";
});
return (counter > 1);
});
return prev_out;
}
PDNode *patterns::QuantizePlacement::operator()(
const std::unordered_set<std::string> &quantize_enabled_op_types) {
std::unordered_set<std::string> supported_op_types =
std::unordered_set<std::string>(
{"concat", "conv2d", "elementwise_add", "fc", "matmul", "pool2d",
"prior_box", "relu", "reshape2", "transpose2", "fusion_gru"});
if (!quantize_enabled_op_types.empty()) {
supported_op_types = quantize_enabled_op_types;
}
auto *op = pattern->NewNode(op_repr())->assert_is_ops(supported_op_types);
return op;
}
PDNode *patterns::Bfloat16Placement::operator()(
const std::unordered_set<std::string> &bfloat16_enabled_op_types) {
std::unordered_set<std::string> supported_op_types =
std::unordered_set<std::string>(
{"concat", "conv2d", "elementwise_add", "elementwise_mul", "fc",
"fusion_gru", "gelu", "layer_norm", "matmul", "pool2d", "reshape2",
"softmax", "sum", "transpose2"});
if (!bfloat16_enabled_op_types.empty()) {
supported_op_types = bfloat16_enabled_op_types;
}
auto *op = pattern->NewNode(op_repr())->assert_is_ops(supported_op_types);
op->assert_more([&](Node *node) {
return node->Op()->GetAttrIfExists<bool>("use_mkldnn") ||
node->Op()->Type() == "reshape2";
});
return op;
}
PDNode *patterns::OrphanedBfloat16::operator()() {
auto *prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();
prev_op->assert_more([&](Node *node) {
return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
"float32";
});
auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput();
auto *op = pattern->NewNode(op_repr())->assert_is_op();
op->assert_more([&](Node *node) {
return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
"bfloat16";
});
auto *op_out = pattern->NewNode(op_out_repr())->AsOutput();
auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();
next_op->assert_more([&](Node *node) {
return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
"float32";
});
prev_op->LinksTo({prev_out});
op->LinksFrom({prev_out}).LinksTo({op_out});
next_op->LinksFrom({op_out});
return next_op;
}
PDNode *patterns::LastBfloat16Ops::operator()() {
auto *op = pattern->NewNode(op_repr())->assert_is_op();
op->assert_more([&](Node *node) {
return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
"bfloat16";
});
auto *op_out = pattern->NewNode(op_out_repr())->AsOutput();
auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();
next_op->assert_more([&](Node *node) {
return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") !=
"bfloat16";
});
op->LinksTo({op_out});
next_op->LinksFrom({op_out});
return next_op;
}
PDNode *patterns::FirstBfloat16Ops::operator()() {
auto *prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();
prev_op->assert_more([&](Node *node) {
return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") !=
"bfloat16";
});
auto *op_in = pattern->NewNode(op_in_repr())->AsOutput();
auto *op = pattern->NewNode(op_repr())->assert_is_op();
op->assert_more([&](Node *node) {
return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
"bfloat16";
});
prev_op->LinksTo({op_in});
op->LinksFrom({op_in});
return op;
}
PDNode *patterns::DuplicatedInputs::operator()() {
auto op = pattern->NewNode(op_repr())->assert_is_ops({"concat", "sum"});
op->assert_more([&](Node *node) {
return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
"bfloat16";
});
return op;
}
PDNode *patterns::UnnecessaryReorders::operator()() {
auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();
prev_op->assert_more([&](Node *node) {
return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
"bfloat16";
});
auto *quant_in = pattern->NewNode(quant_in_repr())
->assert_is_op_input("quantize", "Input");
auto *quant_op = pattern->NewNode(quant_op_repr())->assert_is_op("quantize");
auto *quant_out = pattern->NewNode(quant_out_repr())
->assert_is_op_output("quantize", "Output");
prev_op->LinksTo({quant_in});
quant_op->LinksFrom({quant_in}).LinksTo({quant_out});
return quant_out;
}
PDNode *patterns::MKLDNNInPlace::operator()() {
const std::unordered_set<std::string> &supported_op_types = {
"abs",
"elementwise_mul",
"elementwise_add",
"gelu",
"leaky_relu",
"relu",
"softmax",
"sqrt",
"swish",
"tanh"};
auto possible_inplace_op = pattern->NewNode(inplace_to_be_op_repr())
->assert_is_ops(supported_op_types);
auto input = pattern->NewNode(inplace_to_be_op_in_repr())
->assert_is_ops_input(supported_op_types)
->AsInput();
auto output = pattern->NewNode(inplace_to_be_op_out_repr())
->assert_is_ops_output(supported_op_types)
->AsOutput();
auto next_op = pattern->NewNode(next_op_repr())->assert_is_op();
auto next_output = pattern->NewNode(next_op_out_repr())->AsOutput();
// Check if op is MKL-DNN enabled
possible_inplace_op->assert_op_attr("use_mkldnn", true);
// linked structure
possible_inplace_op->LinksTo({output});
possible_inplace_op->LinksFrom({input});
next_op->LinksFrom({output});
next_op->LinksTo({next_output});
return possible_inplace_op;
}
// a -> transpose_op(1) -> transpose_out_a -> flatten_op(1) -> flatten_out_a
// b -> transpose_op(2) -> transpose_out_b -> flatten_op(2) -> flatten_out_b
// ...
// z -> transpose_op(n) -> transpose_out_z -> flatten_op(n) -> flatten_out_z
// flatten_out_a -> concat_op flatten_out_b -> concat_op ... flatten_out_z ->
// concat_op
PDNode *patterns::TransposeFlattenConcat::operator()(
std::vector<PDNode *> conv_in, int times) {
// The times represents the repeat times of the
// {trans, trans_out, flatten, flatten_out}
const int kNumFields = 4;
const int kTransOutOffset = 1;
const int kFlattenOffset = 2;
const int kFlattenOutOffset = 3;
std::vector<PDNode *> nodes;
for (int i = 0; i < times; i++) {
nodes.push_back(
pattern->NewNode(GetNodeName("transpose" + std::to_string(i)))
->assert_is_op("transpose2"));
nodes.push_back(
pattern->NewNode(GetNodeName("transpose_out" + std::to_string(i)))
->assert_is_op_output("transpose2")
->assert_is_op_input("flatten2", "X")
->AsIntermediate());
nodes.push_back(pattern->NewNode(GetNodeName("flatten" + std::to_string(i)))
->assert_is_op("flatten2"));
nodes.push_back(
pattern->NewNode(GetNodeName("flatten_out" + std::to_string(i)))
->assert_is_op_output("flatten2")
->assert_is_op_nth_input("concat", "X", i)
->AsIntermediate());
}
auto concat_op = pattern->NewNode(GetNodeName("concat"))
->assert_is_op("concat")
->assert_op_has_n_inputs("concat", times);
auto concat_out = pattern->NewNode(GetNodeName("concat_out"))
->assert_is_op_output("concat")
->AsOutput();
std::vector<PDNode *> flatten_outs;
for (int i = 0; i < times; i++) {
conv_in[i]->AsInput();
// trans
nodes[i * kNumFields]->LinksFrom({conv_in[i]});
// trans_out
nodes[i * kNumFields + kTransOutOffset]->LinksFrom({nodes[i * kNumFields]});
// flatten
nodes[i * kNumFields + kFlattenOffset]->LinksFrom(
{nodes[i * kNumFields + kTransOutOffset]});
// flatten_out
nodes[i * kNumFields + kFlattenOutOffset]->LinksFrom(
{nodes[i * kNumFields + kFlattenOffset]});
flatten_outs.push_back(nodes[i * kNumFields + kFlattenOutOffset]);
}
concat_op->LinksFrom(flatten_outs).LinksTo({concat_out});
return concat_out;
}
void patterns::DeleteQuantOpFuse::operator()(PDNode *input_act_node,
const std::string &quant_type) {
auto *input_scale_node = pattern->NewNode(GetNodeName("input_scale_node"))
->assert_is_op_input(quant_type, "InScale")
->AsInput();
auto *quant_node =
pattern->NewNode(GetNodeName("quant_node"))->assert_is_op(quant_type);
auto *output_scale_node = pattern->NewNode(GetNodeName("output_scale_node"))
->assert_is_op_output(quant_type, "OutScale")
->AsOutput();
auto *output_act_node = pattern->NewNode(GetNodeName("output_act_node"))
->assert_is_op_output(quant_type, "Out")
->AsOutput();
quant_node->LinksFrom({input_scale_node, input_act_node});
output_scale_node->LinksFrom({quant_node});
output_act_node->LinksFrom({quant_node});
}
void patterns::DequantOpFuse::operator()(PDNode *quantized_op_input,
const std::string &quantized_op_type,
const std::string &dequant_type,
const std::string &weight_name) {
auto *quantized_op_weight =
pattern->NewNode(GetNodeName("quantized_op_weight"))
->assert_is_op_input(quantized_op_type, weight_name)
->AsInput();
auto *quantized_op = pattern->NewNode(GetNodeName("quantized_op"))
->assert_is_op(quantized_op_type);
auto *quantized_op_out = pattern->NewNode(GetNodeName("quantized_op_out"))
->assert_is_op_output(quantized_op_type)
->assert_is_op_input(dequant_type, "X");
auto *dequant_op =
pattern->NewNode(GetNodeName("dequant_op"))->assert_is_op(dequant_type);
auto *dequant_op_out = pattern->NewNode(GetNodeName("dequant_op_out"))
->assert_is_op_output(dequant_type, "Out")
->AsOutput();
PDNode *dequant_channel_scale = nullptr;
if (dequant_type == "fake_channel_wise_dequantize_max_abs") {
dequant_channel_scale =
pattern->NewNode(GetNodeName("dequant_channel_scale"))
->assert_is_op_nth_input(dequant_type, "Scales", 0)
->AsInput();
}
quantized_op->LinksFrom({quantized_op_input, quantized_op_weight});
quantized_op_out->LinksFrom({quantized_op});
if (dequant_type == "fake_channel_wise_dequantize_max_abs") {
dequant_op->LinksFrom({quantized_op_out, dequant_channel_scale});
} else {
dequant_op->LinksFrom({quantized_op_out});
}
dequant_op_out->LinksFrom({dequant_op});
}
void patterns::ShuffleChannelPattern::operator()(PDNode *reshape1_in) {
auto reshape1_op =
pattern->NewNode(reshape1_op_repr())->assert_is_op("reshape2");
reshape1_op->assert_more([&](Node *x) {
return BOOST_GET_CONST(std::vector<int>, x->Op()->GetAttr("shape"))
.size() == 5;
});
auto reshape1_out = pattern->NewNode(reshape1_out_repr())
->assert_is_op_output("reshape2", "Out")
->assert_is_op_input("transpose2")
->AsIntermediate();
auto transpose_op =
pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");
auto transpose_out = pattern->NewNode(transpose_out_repr())
->assert_is_op_output("transpose2", "Out")
->assert_is_op_input("reshape2")
->AsIntermediate();
auto reshape2_op =
pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2");
auto reshape2_out = pattern->NewNode(reshape2_out_repr())
->assert_is_op_output("reshape2", "Out")
->AsOutput();
reshape1_op->LinksFrom({reshape1_in});
reshape1_out->LinksFrom({reshape1_op});
transpose_op->LinksFrom({reshape1_out});
transpose_out->LinksFrom({transpose_op});
reshape2_op->LinksFrom({transpose_out});
reshape2_out->LinksFrom({reshape2_op});
}
void patterns::DeleteQuantDequantOpPattern::operator()() {
auto any_op_out =
pattern->NewNode(any_op_out_repr())
->assert_is_op_input(
"fake_quantize_dequantize_moving_average_abs_max", "X")
->AsInput();
auto quant_dequant_op_inscale =
pattern->NewNode(quant_dequant_op_inscale_repr())
->assert_is_op_input(
"fake_quantize_dequantize_moving_average_abs_max", "InScale")
->AsInput();
auto quant_dequant_op =
pattern->NewNode(quant_dequant_op_repr())
->assert_is_op("fake_quantize_dequantize_moving_average_abs_max");
auto quant_dequant_out =
pattern->NewNode(quant_dequant_op_out_repr())
->assert_is_op_output(
"fake_quantize_dequantize_moving_average_abs_max", "Out")
->AsIntermediate();
auto quant_dequant_op_outscale =
pattern->NewNode(quant_dequant_op_outscale_repr())
->assert_is_op_output(
"fake_quantize_dequantize_moving_average_abs_max", "OutScale")
->AsOutput();
auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();
quant_dequant_op->LinksFrom({any_op_out, quant_dequant_op_inscale});
quant_dequant_op_outscale->LinksFrom({quant_dequant_op});
quant_dequant_out->LinksFrom({quant_dequant_op});
any_op2->LinksFrom({quant_dequant_out});
}
void patterns::DeleteQuantDequantFilterOpPattern::operator()() {
auto quant_dequant_op_x =
pattern->NewNode(quant_dequant_op_x_repr())
->assert_is_ops_input(
{"fake_channel_wise_quantize_dequantize_abs_max",
"fake_quantize_dequantize_abs_max"},
"X")
->AsInput();
auto quant_dequant_op =
pattern->NewNode(quant_dequant_op_repr())
->assert_is_ops({"fake_channel_wise_quantize_dequantize_abs_max",
"fake_quantize_dequantize_abs_max"});
auto quant_dequant_out =
pattern->NewNode(quant_dequant_op_out_repr())
->assert_is_ops_output(
{"fake_channel_wise_quantize_dequantize_abs_max",
"fake_quantize_dequantize_abs_max"},
"Out")
->AsIntermediate();
auto quant_dequant_op_outscale =
pattern->NewNode(quant_dequant_op_outscale_repr())
->assert_is_ops_output(
{"fake_channel_wise_quantize_dequantize_abs_max",
"fake_quantize_dequantize_abs_max"},
"OutScale")
->AsOutput();
auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();
quant_dequant_op->LinksFrom({quant_dequant_op_x});
quant_dequant_op_outscale->LinksFrom({quant_dequant_op});
quant_dequant_out->LinksFrom({quant_dequant_op});
any_op2->LinksFrom({quant_dequant_out});
}
PDNode *patterns::ReshapeTransposeMatmulPattern::operator()(
bool with_reshape_xshape, bool with_transpose_xshape) {
auto reshape_op =
pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2");
auto transpose_op =
pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");
auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
auto reshape_in = pattern->NewNode(reshape_in_repr())
->AsInput()
->assert_is_op_input("reshape2", "X");
auto reshape_out = pattern->NewNode(reshape_out_repr())
->AsIntermediate()
->assert_is_op_input("transpose2", "X")
->assert_is_op_output("reshape2", "Out");
if (!with_reshape_xshape)
reshape_out->assert_is_only_output_of_op("reshape2");
auto reshape_xshape = with_reshape_xshape
? pattern->NewNode(reshape_xshape_repr())
->AsIntermediate()
->assert_is_op_output("reshape2", "XShape")
: nullptr;
auto transpose_out = pattern->NewNode(transpose_out_repr())
->AsIntermediate()
->assert_is_op_input("matmul")
->assert_is_op_output("transpose2", "Out");
if (!with_transpose_xshape)
transpose_out->assert_is_only_output_of_op("transpose2");
auto transpose_xshape =
with_transpose_xshape
? pattern->NewNode(transpose_xshape_repr())
->AsIntermediate()
->assert_is_op_output("transpose2", "XShape")
: nullptr;
auto matmul_out = pattern->NewNode(matmul_out_repr())
->AsOutput()
->assert_is_op_output("matmul", "Out");
reshape_op->LinksFrom({reshape_in}).LinksTo({reshape_out});
if (with_reshape_xshape) reshape_op->LinksTo({reshape_xshape});
transpose_op->LinksFrom({reshape_out}).LinksTo({transpose_out});
if (with_transpose_xshape) transpose_op->LinksTo({transpose_xshape});
matmul_op->LinksFrom({transpose_out}).LinksTo({matmul_out});
return matmul_out;
}
PDNode *patterns::MatmulTransposeReshapePattern::operator()() {
auto reshape_op =
pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2");
auto transpose_op =
pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");
auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
auto matmul_out = pattern->NewNode(matmul_out_repr())
->AsInput()
->assert_is_op_output("matmul", "Out")
->assert_is_op_input("transpose2", "X");
auto transpose_out = pattern->NewNode(transpose_out_repr())
->AsIntermediate()
->assert_is_op_output("transpose2", "Out")
->assert_is_op_input("reshape2", "X");
auto transpose_out_xshape = pattern->NewNode(transpose_out_xshape_repr())
->AsIntermediate()
->assert_is_op_output("transpose2", "XShape");
auto reshape_out = pattern->NewNode(reshape_out_repr())
->AsOutput()
->assert_is_op_output("reshape2");
auto reshape_out_xshape = pattern->NewNode(reshape_out_xshape_repr())
->AsIntermediate()
->assert_is_op_output("reshape2", "XShape");
matmul_op->LinksTo({matmul_out});
transpose_op->LinksTo({transpose_out_xshape});
reshape_op->LinksTo({reshape_out_xshape});
transpose_op->LinksFrom({matmul_out}).LinksTo({transpose_out});
reshape_op->LinksFrom({transpose_out}).LinksTo({reshape_out});
return reshape_out;
}
PDNode *patterns::FusionGru::operator()() {
auto op = pattern->NewNode(op_repr())->assert_is_op("fusion_gru");
auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
"fusion_gru", "X");
auto weight_h = pattern->NewNode(weight_h_repr())
->AsInput()
->assert_is_op_input("fusion_gru", "WeightH");
auto weight_x = pattern->NewNode(weight_x_repr())
->AsInput()
->assert_is_op_input("fusion_gru", "WeightX");
auto out = pattern->NewNode(out_repr())
->AsOutput()
->assert_is_op_output("fusion_gru", "Hidden");
op->LinksFrom({x, weight_h, weight_x}).LinksTo({out});
return out;
}
PDNode *patterns::TwoFusionGruConcat::operator()() {
auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
"fusion_gru", "X");
auto gru1 =
pattern->NewNode(gru1_repr())
->assert_is_op("fusion_gru")
->assert_more([&](Node *node) {
return node->Op()->GetAttrIfExists<bool>("is_reverse") == false;
});
auto gru2 =
pattern->NewNode(gru2_repr())
->assert_is_op("fusion_gru")
->assert_more([&](Node *node) {
return node->Op()->GetAttrIfExists<bool>("is_reverse") == true;
});
auto wh1 = pattern->NewNode(wh1_repr())
->AsInput()
->assert_is_op_input("fusion_gru", "WeightH");
auto wh2 = pattern->NewNode(wh2_repr())
->AsInput()
->assert_is_op_input("fusion_gru", "WeightH");
auto wx1 = pattern->NewNode(wx1_repr())
->AsInput()
->assert_is_op_input("fusion_gru", "WeightX");
auto wx2 = pattern->NewNode(wx2_repr())
->AsInput()
->assert_is_op_input("fusion_gru", "WeightX");
auto b1 = pattern->NewNode(b1_repr())->AsInput()->assert_is_op_input(
"fusion_gru", "Bias");
auto b2 = pattern->NewNode(b2_repr())->AsInput()->assert_is_op_input(
"fusion_gru", "Bias");
auto h1 = pattern->NewNode(h1_repr())
->AsOutput()
->assert_is_op_output("fusion_gru", "Hidden")
->assert_is_op_input("concat")
->AsIntermediate();
auto h2 = pattern->NewNode(h2_repr())
->AsOutput()
->assert_is_op_output("fusion_gru", "Hidden")
->assert_is_op_input("concat")
->AsIntermediate();
auto concat = pattern->NewNode(concat_repr())->assert_is_op("concat");
auto out = pattern->NewNode(out_repr())
->AsOutput()
->assert_is_op_output("concat", "Out");
gru1->LinksFrom({x, wh1, wx1, b1}).LinksTo({h1});
gru2->LinksFrom({x, wh2, wx2, b2}).LinksTo({h2});
concat->LinksFrom({h1, h2}).LinksTo({out});
return out;
}
PDNode *patterns::MultiGruSeq::operator()() {
auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
"multi_gru", "X");
auto gru1 = pattern->NewNode(gru1_repr())->assert_is_op("multi_gru");
auto wx11 = pattern->NewNode(wx11_repr())
->AsInput()
->assert_is_op_nth_input("multi_gru", "WeightX", 0);
auto wx12 = pattern->NewNode(wx12_repr())
->AsInput()
->assert_is_op_nth_input("multi_gru", "WeightX", 1);
auto wh11 = pattern->NewNode(wh11_repr())
->AsInput()
->assert_is_op_nth_input("multi_gru", "WeightH", 0);
auto wh12 = pattern->NewNode(wh12_repr())
->AsInput()
->assert_is_op_nth_input("multi_gru", "WeightH", 1);
auto b11 = pattern->NewNode(b11_repr())
->AsInput()
->assert_is_op_nth_input("multi_gru", "Bias", 0);
auto b12 = pattern->NewNode(b12_repr())
->AsInput()
->assert_is_op_nth_input("multi_gru", "Bias", 1);
auto h1 = pattern->NewNode(h1_repr())
->AsOutput()
->assert_is_op_output("multi_gru", "Hidden")
->assert_is_op_input("multi_gru", "X")
->AsIntermediate();
auto gru2 = pattern->NewNode(gru2_repr())->assert_is_op("multi_gru");
auto wx21 = pattern->NewNode(wx21_repr())
->AsInput()
->assert_is_op_nth_input("multi_gru", "WeightX", 0);
auto wx22 = pattern->NewNode(wx22_repr())
->AsInput()
->assert_is_op_nth_input("multi_gru", "WeightX", 1);
auto wh21 = pattern->NewNode(wh21_repr())
->AsInput()
->assert_is_op_nth_input("multi_gru", "WeightH", 0);
auto wh22 = pattern->NewNode(wh22_repr())
->AsInput()
->assert_is_op_nth_input("multi_gru", "WeightH", 1);
auto b21 = pattern->NewNode(b21_repr())
->AsInput()
->assert_is_op_nth_input("multi_gru", "Bias", 0);
auto b22 = pattern->NewNode(b22_repr())
->AsInput()
->assert_is_op_nth_input("multi_gru", "Bias", 1);
auto h2 = pattern->NewNode(h2_repr())->AsOutput()->assert_is_op_output(
"multi_gru", "Hidden");
gru1->LinksFrom({x, wx11, wx12, wh11, wh12, b11, b12}).LinksTo({h1});
gru2->LinksFrom({h1, wx21, wx22, wh21, wh22, b21, b22}).LinksTo({h2});
return h2;
}
PDNode *patterns::MultiGru::operator()() {
auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
"multi_gru", "X");
auto gru = pattern->NewNode(gru_repr())->assert_is_op("multi_gru");
auto wx = pattern->NewNode(wx_repr())->AsInput()->assert_is_op_nth_input(
"multi_gru", "WeightX", 0);
auto wh = pattern->NewNode(wh_repr())->AsInput()->assert_is_op_nth_input(
"multi_gru", "WeightH", 0);
auto h = pattern->NewNode(h_repr())->AsOutput()->assert_is_op_output(
"multi_gru", "Hidden");
gru->LinksFrom({x, wx, wh}).LinksTo({h});
return h;
}
} // namespace ir
} // namespace framework
} // namespace paddle