You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h

99 lines
3.6 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace paddle {
namespace framework {
namespace ir {
/*
* Map variable name to tensor of scaling factors scaling it to MAX=1.0.
* bool denotes whether quantization of the variable should be done to unsigned
* type.
*/
class Graph;
class Node;
using VarQuantScale =
std::unordered_map<std::string, std::pair<bool, LoDTensor>>;
/*
* Quantize all supported operators.
*/
class CPUQuantizePass : public FusePassBase {
public:
virtual ~CPUQuantizePass() {}
protected:
void ApplyImpl(ir::Graph* graph) const override;
void QuantizeConv(Graph* graph, bool with_residual_data = false) const;
void QuantizeFc(Graph* graph) const;
void QuantizePool(Graph* graph) const;
void QuantizeConcat(Graph* graph) const;
void QuantizePriorBox(Graph* graph) const;
void QuantizeTranspose(Graph* graph) const;
void QuantizeReshape(Graph* graph) const;
void QuantizeMatmul(Graph* graph) const;
void QuantizeElementwiseAdd(Graph* graph) const;
void QuantizeFusionGru(Graph* graph) const;
void QuantizeMultiGru(Graph* graph) const;
void QuantizeInput(Graph* g, Node* op, Node* input, std::string input_name,
double scale_to_one, bool is_input_unsigned,
std::string scale_attr_name = "", float shift = 0.0,
std::string shift_attr_name = "") const;
// quantize all inputs of given name with the same (minimum) scale
void QuantizeInputs(Graph* g, Node* op, std::string input_name,
bool are_inputs_unsigned,
std::string scale_attr_name = "", float shift = 0.0,
std::string shift_attr_name = "") const;
void DequantizeOutput(Graph* g, Node* op, Node* output,
std::string output_name, double scale_to_one,
bool is_unsigned,
std::string scale_attr_name = "") const;
bool AreScalesPresentForVarNames(std::vector<std::string> names) const;
bool AreScalesPresentForNodes(std::initializer_list<Node*> nodes) const;
std::pair<bool, LoDTensor> GetScaleDataByName(const std::string& name) const;
std::pair<bool, LoDTensor> GetScaleDataForNode(const Node* node) const;
LoDTensor GetScaleTensorByName(const std::string& name) const;
LoDTensor GetScaleTensorForNode(const Node* node) const;
double GetScaleValueByName(const std::string& name,
bool* is_unsigned = nullptr) const;
double GetScaleValueForNode(const Node* node,
bool* is_unsigned = nullptr) const;
bool IsOpDequantized(const Node* node) const;
bool IsOpQuantized(const Node* node) const;
const std::string name_scope_{"quantize"};
};
} // namespace ir
} // namespace framework
} // namespace paddle