You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/trainer/tests/test_config.conf

83 lines
2.6 KiB

#edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
TrainData(ProtoData(
files = "dummy_list",
constant_slots = [1.0],
async_load_data = True))
TestData(SimpleData(
files = "trainer/tests/sample_filelist.txt",
feat_dim = 3,
context_len = 0,
buffer_capacity = 1000000,
async_load_data = False))
settings(batch_size = 100)
data = data_layer(name='input', size=3)
wt = data_layer(name='weight', size=1)
fc1 = fc_layer(input=data, size=5,
bias_attr=True,
act=SigmoidActivation())
fc2 = fc_layer(input=data, size=12,
bias_attr=True,
param_attr=ParamAttr(name='sharew'),
act=LinearActivation())
fc3 = fc_layer(input=data, size=3,
bias_attr=True,
act=TanhActivation())
fc4 = fc_layer(input=data, size=5,
bias_attr=True,
layer_attr=ExtraAttr(drop_rate=0.5),
act=SquareActivation())
pool = img_pool_layer(input=fc2,
pool_size=2,
pool_size_y=3,
num_channels=1,
padding=1,
padding_y=2,
stride=2,
stride_y=3,
pool_type=CudnnAvgPooling())
concat = concat_layer(input=[fc3, fc4])
with mixed_layer(size=3, act=SoftmaxActivation()) as output:
output += full_matrix_projection(input=fc1)
output += trans_full_matrix_projection(input=fc2,
param_attr=ParamAttr(name='sharew'))
output += full_matrix_projection(input=concat)
output += identity_projection(input=fc3)
lbl = data_layer(name='label', size=1)
cost = classification_cost(input=output, label=lbl, weight=wt,
layer_attr=ExtraAttr(device=-1))
nce = nce_layer(input=fc2, label=lbl, weight=wt,
num_classes=3,
neg_distribution=[0.1, 0.3, 0.6])
outputs(cost, nce)