You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/gserver/layers/MKLDNNAddtoLayer.cpp

220 lines
7.3 KiB

/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNAddtoLayer.h"
using namespace mkldnn; // NOLINT
namespace paddle {
REGISTER_LAYER(mkldnn_addto, MKLDNNAddtoLayer);
bool MKLDNNAddtoLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
if (!MKLDNNLayer::init(layerMap, parameterMap)) {
return false;
}
layerSize_ = getSize();
for (size_t i = 0; i < inputLayers_.size(); i++) {
CHECK_EQ(layerSize_, inputLayers_[i]->getSize()) << "input size must equal";
}
if (biasParameter_.get() != NULL) {
biases_ =
std::unique_ptr<Weight>(new Weight(1, layerSize_, biasParameter_, 0));
}
return true;
}
void MKLDNNAddtoLayer::reshape(
int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) {
CHECK_EQ(layerSize_, getSize()) << "this layer size can not be changed";
reshapeInput(bs, ih, iw);
ic = inputLayers_[0]->getSize() / ih / iw;
CHECK_EQ((size_t)ic * ih * iw, inputLayers_[0]->getSize());
CHECK_EQ(inputLayers_[0]->getOutputValue()->getElementCnt(),
(size_t)bs * ic * ih * iw);
for (size_t i = 0; i < inputLayers_.size(); i++) {
CHECK_EQ(int64_t(bs), inputLayers_[i]->getOutput().getBatchSize());
CHECK_EQ(layerSize_, inputLayers_[i]->getSize());
}
oc = ic;
oh = ih;
ow = iw;
reshapeOutput(oh, ow);
resizeOutput(bs, oc * oh * ow);
}
void MKLDNNAddtoLayer::resetFwd(std::vector<primitive>& pipeline,
std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& out) {
resetFwdBuffers(inputs, biasVal_, out);
std::shared_ptr<sum::primitive_desc> fwdPD;
std::shared_ptr<sum::primitive_desc> biasPD;
resetFwdPD(fwdPD, biasPD, inputs, biasVal_, out);
resetFwdPipeline(pipeline, fwdPD, biasPD, inputs, biasVal_, out);
}
void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline,
std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& out) {
resetBwdBuffers(inputs, biasGrad_, out);
// backward only need share output grad to input grad
for (size_t i = 0; i < inputs.size(); i++) {
if (inputs[i] != nullptr) {
inputs[i] = out;
inputLayers_[i]->getOutputGrad()->setData(inputs[i]->getData());
}
}
// backward bias
bwdBias_ = nullptr;
if (biasGrad_) {
std::vector<float> scales(bs_, 1.0);
std::vector<memory::primitive_desc> srcPDs(bs_,
biasGrad_->getPrimitiveDesc());
auto biasPD =
sum::primitive_desc(biasGrad_->getMemoryDesc(), scales, srcPDs);
std::vector<primitive::at> srcs;
for (size_t i = 0; i < grads_.size(); ++i) {
srcs.push_back(*(grads_[i]));
}
bwdBias_.reset(new sum(biasPD, srcs, *biasGrad_));
pipeline.push_back(*bwdBias_);
}
}
void MKLDNNAddtoLayer::updateWeights(const UpdateCallback& callback) {
if (biases_ && biases_->getWGrad()) {
biases_->getParameterPtr()->incUpdate(callback);
}
}
void MKLDNNAddtoLayer::prepareBias(MKLDNNMatrixPtr& bias,
const MatrixPtr& biasMat,
const MKLDNNMatrixPtr& out,
std::vector<MKLDNNMatrixPtr>& outs) {
auto pd = MKLDNNMatrix::createPrimitiveDesc(
{(int)layerSize_}, memory::format::x, engine_);
bias = MKLDNNMatrix::create(pd, biasMat);
outs.clear();
real* data = out->getData();
CHECK_EQ(bs_ * layerSize_, out->getElementCnt());
for (int i = 0; i < bs_; ++i) {
MatrixPtr tmp =
Matrix::create(data + i * layerSize_, 1, layerSize_, false, false);
outs.push_back(MKLDNNMatrix::create(bias->getPrimitiveDesc(), tmp));
}
}
void MKLDNNAddtoLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
inputs.resize(inputLayers_.size());
for (size_t i = 0; i < inputs.size(); i++) {
resetInValue(inputs[i], nullptr, i);
CHECK(inputs[i]);
inputs[i]->downSpatial();
}
for (size_t i = 1; i < inputs.size(); i++) {
CHECK_PRIMITIVE_DESC_EQ(inputs[i], inputs[0]->getPrimitiveDesc());
}
resetOutValue(out, inputs[0]->getPrimitiveDesc());
if (biases_ && biases_->getW()) {
prepareBias(bias, biases_->getW(), out, vals_);
} else {
bias = nullptr;
}
}
void MKLDNNAddtoLayer::resetFwdPD(std::shared_ptr<sum::primitive_desc>& pd,
std::shared_ptr<sum::primitive_desc>& biasPD,
std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr bias,
MKLDNNMatrixPtr out) {
std::vector<float> scales(inputs.size(), 1.0);
std::vector<memory::primitive_desc> srcPDs;
for (size_t i = 0; i < inputs.size(); i++) {
srcPDs.push_back(inputs[i]->getPrimitiveDesc());
}
CHECK(out);
pd.reset(new sum::primitive_desc(out->getMemoryDesc(), scales, srcPDs));
CHECK_PRIMITIVE_DESC_EQ(out, pd->dst_primitive_desc());
biasPD = nullptr;
if (bias) {
std::vector<float> scales(2, 1.0);
std::vector<memory::primitive_desc> srcPDs(2, bias->getPrimitiveDesc());
biasPD.reset(
new sum::primitive_desc(bias->getMemoryDesc(), scales, srcPDs));
CHECK_PRIMITIVE_DESC_EQ(bias, biasPD->dst_primitive_desc());
}
}
void MKLDNNAddtoLayer::resetFwdPipeline(
std::vector<primitive>& pipeline,
std::shared_ptr<sum::primitive_desc>& pd,
std::shared_ptr<sum::primitive_desc>& biasPD,
std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
std::vector<primitive::at> srcs;
for (size_t i = 0; i < inputs.size(); i++) {
srcs.push_back(*(inputs[i]));
}
fwd_.reset(new sum(*pd, srcs, *out));
pipeline.push_back(*fwd_);
fwdBias_.clear();
if (biasPD == nullptr || bias == nullptr) {
return;
}
fwdBias_.resize(vals_.size());
for (size_t i = 0; i < vals_.size(); ++i) {
std::vector<primitive::at> srcs;
srcs.push_back(*(vals_[i]));
srcs.push_back(*bias);
fwdBias_[i].reset(new sum(*biasPD, srcs, *vals_[i]));
pipeline.push_back(*fwdBias_[i]);
}
}
void MKLDNNAddtoLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
CHECK(outVal_);
resetOutGrad(out, outVal_->getPrimitiveDesc());
CHECK(out);
inputs.resize(inputLayers_.size());
for (size_t i = 0; i < inputs.size(); i++) {
resetInGrad(inputs[i], inVals_[i]->getPrimitiveDesc(), i);
CHECK_PRIMITIVE_DESC_EQ(inputs[i], out->getPrimitiveDesc());
}
if (biases_ && biases_->getWGrad()) {
prepareBias(bias, biases_->getWGrad(), out, grads_);
} else {
bias = nullptr;
}
}
} // namespace paddle