You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
220 lines
7.3 KiB
220 lines
7.3 KiB
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "MKLDNNAddtoLayer.h"
|
|
|
|
using namespace mkldnn; // NOLINT
|
|
|
|
namespace paddle {
|
|
|
|
REGISTER_LAYER(mkldnn_addto, MKLDNNAddtoLayer);
|
|
|
|
bool MKLDNNAddtoLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
if (!MKLDNNLayer::init(layerMap, parameterMap)) {
|
|
return false;
|
|
}
|
|
|
|
layerSize_ = getSize();
|
|
for (size_t i = 0; i < inputLayers_.size(); i++) {
|
|
CHECK_EQ(layerSize_, inputLayers_[i]->getSize()) << "input size must equal";
|
|
}
|
|
if (biasParameter_.get() != NULL) {
|
|
biases_ =
|
|
std::unique_ptr<Weight>(new Weight(1, layerSize_, biasParameter_, 0));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void MKLDNNAddtoLayer::reshape(
|
|
int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) {
|
|
CHECK_EQ(layerSize_, getSize()) << "this layer size can not be changed";
|
|
reshapeInput(bs, ih, iw);
|
|
ic = inputLayers_[0]->getSize() / ih / iw;
|
|
CHECK_EQ((size_t)ic * ih * iw, inputLayers_[0]->getSize());
|
|
CHECK_EQ(inputLayers_[0]->getOutputValue()->getElementCnt(),
|
|
(size_t)bs * ic * ih * iw);
|
|
for (size_t i = 0; i < inputLayers_.size(); i++) {
|
|
CHECK_EQ(int64_t(bs), inputLayers_[i]->getOutput().getBatchSize());
|
|
CHECK_EQ(layerSize_, inputLayers_[i]->getSize());
|
|
}
|
|
|
|
oc = ic;
|
|
oh = ih;
|
|
ow = iw;
|
|
reshapeOutput(oh, ow);
|
|
resizeOutput(bs, oc * oh * ow);
|
|
}
|
|
|
|
void MKLDNNAddtoLayer::resetFwd(std::vector<primitive>& pipeline,
|
|
std::vector<MKLDNNMatrixPtr>& inputs,
|
|
MKLDNNMatrixPtr& out) {
|
|
resetFwdBuffers(inputs, biasVal_, out);
|
|
|
|
std::shared_ptr<sum::primitive_desc> fwdPD;
|
|
std::shared_ptr<sum::primitive_desc> biasPD;
|
|
resetFwdPD(fwdPD, biasPD, inputs, biasVal_, out);
|
|
|
|
resetFwdPipeline(pipeline, fwdPD, biasPD, inputs, biasVal_, out);
|
|
}
|
|
|
|
void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline,
|
|
std::vector<MKLDNNMatrixPtr>& inputs,
|
|
MKLDNNMatrixPtr& out) {
|
|
resetBwdBuffers(inputs, biasGrad_, out);
|
|
|
|
// backward only need share output grad to input grad
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
if (inputs[i] != nullptr) {
|
|
inputs[i] = out;
|
|
inputLayers_[i]->getOutputGrad()->setData(inputs[i]->getData());
|
|
}
|
|
}
|
|
|
|
// backward bias
|
|
bwdBias_ = nullptr;
|
|
if (biasGrad_) {
|
|
std::vector<float> scales(bs_, 1.0);
|
|
std::vector<memory::primitive_desc> srcPDs(bs_,
|
|
biasGrad_->getPrimitiveDesc());
|
|
auto biasPD =
|
|
sum::primitive_desc(biasGrad_->getMemoryDesc(), scales, srcPDs);
|
|
std::vector<primitive::at> srcs;
|
|
for (size_t i = 0; i < grads_.size(); ++i) {
|
|
srcs.push_back(*(grads_[i]));
|
|
}
|
|
bwdBias_.reset(new sum(biasPD, srcs, *biasGrad_));
|
|
pipeline.push_back(*bwdBias_);
|
|
}
|
|
}
|
|
|
|
void MKLDNNAddtoLayer::updateWeights(const UpdateCallback& callback) {
|
|
if (biases_ && biases_->getWGrad()) {
|
|
biases_->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
}
|
|
|
|
void MKLDNNAddtoLayer::prepareBias(MKLDNNMatrixPtr& bias,
|
|
const MatrixPtr& biasMat,
|
|
const MKLDNNMatrixPtr& out,
|
|
std::vector<MKLDNNMatrixPtr>& outs) {
|
|
auto pd = MKLDNNMatrix::createPrimitiveDesc(
|
|
{(int)layerSize_}, memory::format::x, engine_);
|
|
bias = MKLDNNMatrix::create(pd, biasMat);
|
|
outs.clear();
|
|
real* data = out->getData();
|
|
CHECK_EQ(bs_ * layerSize_, out->getElementCnt());
|
|
for (int i = 0; i < bs_; ++i) {
|
|
MatrixPtr tmp =
|
|
Matrix::create(data + i * layerSize_, 1, layerSize_, false, false);
|
|
outs.push_back(MKLDNNMatrix::create(bias->getPrimitiveDesc(), tmp));
|
|
}
|
|
}
|
|
|
|
void MKLDNNAddtoLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
|
|
MKLDNNMatrixPtr& bias,
|
|
MKLDNNMatrixPtr& out) {
|
|
inputs.resize(inputLayers_.size());
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
resetInValue(inputs[i], nullptr, i);
|
|
CHECK(inputs[i]);
|
|
inputs[i]->downSpatial();
|
|
}
|
|
for (size_t i = 1; i < inputs.size(); i++) {
|
|
CHECK_PRIMITIVE_DESC_EQ(inputs[i], inputs[0]->getPrimitiveDesc());
|
|
}
|
|
|
|
resetOutValue(out, inputs[0]->getPrimitiveDesc());
|
|
|
|
if (biases_ && biases_->getW()) {
|
|
prepareBias(bias, biases_->getW(), out, vals_);
|
|
} else {
|
|
bias = nullptr;
|
|
}
|
|
}
|
|
|
|
void MKLDNNAddtoLayer::resetFwdPD(std::shared_ptr<sum::primitive_desc>& pd,
|
|
std::shared_ptr<sum::primitive_desc>& biasPD,
|
|
std::vector<MKLDNNMatrixPtr>& inputs,
|
|
MKLDNNMatrixPtr bias,
|
|
MKLDNNMatrixPtr out) {
|
|
std::vector<float> scales(inputs.size(), 1.0);
|
|
std::vector<memory::primitive_desc> srcPDs;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
srcPDs.push_back(inputs[i]->getPrimitiveDesc());
|
|
}
|
|
CHECK(out);
|
|
pd.reset(new sum::primitive_desc(out->getMemoryDesc(), scales, srcPDs));
|
|
CHECK_PRIMITIVE_DESC_EQ(out, pd->dst_primitive_desc());
|
|
|
|
biasPD = nullptr;
|
|
if (bias) {
|
|
std::vector<float> scales(2, 1.0);
|
|
std::vector<memory::primitive_desc> srcPDs(2, bias->getPrimitiveDesc());
|
|
biasPD.reset(
|
|
new sum::primitive_desc(bias->getMemoryDesc(), scales, srcPDs));
|
|
CHECK_PRIMITIVE_DESC_EQ(bias, biasPD->dst_primitive_desc());
|
|
}
|
|
}
|
|
|
|
void MKLDNNAddtoLayer::resetFwdPipeline(
|
|
std::vector<primitive>& pipeline,
|
|
std::shared_ptr<sum::primitive_desc>& pd,
|
|
std::shared_ptr<sum::primitive_desc>& biasPD,
|
|
std::vector<MKLDNNMatrixPtr>& inputs,
|
|
MKLDNNMatrixPtr& bias,
|
|
MKLDNNMatrixPtr& out) {
|
|
std::vector<primitive::at> srcs;
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
srcs.push_back(*(inputs[i]));
|
|
}
|
|
fwd_.reset(new sum(*pd, srcs, *out));
|
|
pipeline.push_back(*fwd_);
|
|
|
|
fwdBias_.clear();
|
|
if (biasPD == nullptr || bias == nullptr) {
|
|
return;
|
|
}
|
|
fwdBias_.resize(vals_.size());
|
|
for (size_t i = 0; i < vals_.size(); ++i) {
|
|
std::vector<primitive::at> srcs;
|
|
srcs.push_back(*(vals_[i]));
|
|
srcs.push_back(*bias);
|
|
fwdBias_[i].reset(new sum(*biasPD, srcs, *vals_[i]));
|
|
pipeline.push_back(*fwdBias_[i]);
|
|
}
|
|
}
|
|
|
|
void MKLDNNAddtoLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
|
|
MKLDNNMatrixPtr& bias,
|
|
MKLDNNMatrixPtr& out) {
|
|
CHECK(outVal_);
|
|
resetOutGrad(out, outVal_->getPrimitiveDesc());
|
|
CHECK(out);
|
|
|
|
inputs.resize(inputLayers_.size());
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
resetInGrad(inputs[i], inVals_[i]->getPrimitiveDesc(), i);
|
|
CHECK_PRIMITIVE_DESC_EQ(inputs[i], out->getPrimitiveDesc());
|
|
}
|
|
|
|
if (biases_ && biases_->getWGrad()) {
|
|
prepareBias(bias, biases_->getWGrad(), out, grads_);
|
|
} else {
|
|
bias = nullptr;
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|