You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
196 lines
6.4 KiB
196 lines
6.4 KiB
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "MKLDNNPoolLayer.h"
|
|
#include "paddle/math/MathUtils.h"
|
|
#include "paddle/utils/Logging.h"
|
|
|
|
using namespace mkldnn; // NOLINT
|
|
typedef memory::format format;
|
|
|
|
namespace paddle {
|
|
|
|
REGISTER_LAYER(mkldnn_pool, MKLDNNPoolLayer);
|
|
|
|
bool MKLDNNPoolLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
if (!MKLDNNLayer::init(layerMap, parameterMap)) {
|
|
return false;
|
|
}
|
|
|
|
/* the size of inputs for pool-layer is 1 */
|
|
CHECK_EQ(config_.inputs_size(), 1);
|
|
const PoolConfig& conf = config_.inputs(0).pool_conf();
|
|
ic_ = conf.channels();
|
|
ih_ = conf.img_size_y();
|
|
iw_ = conf.img_size();
|
|
oc_ = ic_;
|
|
oh_ = conf.output_y();
|
|
ow_ = conf.output_x();
|
|
fh_ = conf.size_y();
|
|
fw_ = conf.size_x();
|
|
ph_ = conf.padding_y();
|
|
pw_ = conf.padding();
|
|
sh_ = conf.stride_y();
|
|
sw_ = conf.stride();
|
|
|
|
const std::string& type = conf.pool_type();
|
|
if (type == "max-projection") {
|
|
poolAlgo_ = algorithm::pooling_max;
|
|
} else if (type == "avg-projection") {
|
|
// paddle only use exclude_padding
|
|
poolAlgo_ = algorithm::pooling_avg_exclude_padding;
|
|
} else {
|
|
LOG(FATAL) << "unknow pooling type!";
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void MKLDNNPoolLayer::reshape(
|
|
int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) {
|
|
reshapeInput(bs, ih, iw);
|
|
// ic_ and oc can not be changed
|
|
CHECK_EQ((size_t)ic,
|
|
inputLayers_[0]->getOutputValue()->getElementCnt() / bs / ih / iw)
|
|
<< "Input channel can not be changed";
|
|
|
|
// cal output sizes
|
|
// paddle used false caffeMode for pooling
|
|
oh = outputSize(ih, fh_, ph_, sh_, false);
|
|
ow = outputSize(iw, fw_, pw_, sw_, false);
|
|
reshapeOutput(oh, ow);
|
|
|
|
resizeOutput(bs, oc * oh * ow);
|
|
}
|
|
|
|
void MKLDNNPoolLayer::resetFwd(std::vector<primitive>& pipeline,
|
|
std::vector<MKLDNNMatrixPtr>& inputs,
|
|
MKLDNNMatrixPtr& out) {
|
|
resetFwdBuffers(inputs[0], out);
|
|
|
|
resetFwdPD(fwdPD_, inputs[0], out);
|
|
|
|
resetFwdPipeline(pipeline, fwdPD_, inputs[0], out);
|
|
}
|
|
|
|
void MKLDNNPoolLayer::resetBwd(std::vector<primitive>& pipeline,
|
|
std::vector<MKLDNNMatrixPtr>& inputs,
|
|
MKLDNNMatrixPtr& out) {
|
|
std::shared_ptr<pool_bwd::primitive_desc> pd;
|
|
|
|
resetBwdBuffers(inputs[0], out);
|
|
|
|
resetBwdPD(pd, inputs[0], out);
|
|
|
|
resetBwdPipeline(pipeline, pd, inputs[0], out);
|
|
}
|
|
|
|
void MKLDNNPoolLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& out) {
|
|
resetInValue(in);
|
|
|
|
memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
|
|
CHECK(in);
|
|
auto outPD =
|
|
MKLDNNMatrix::createPrimitiveDesc(outDims, in->getFormat(), engine_);
|
|
resetOutValue(out, outPD);
|
|
}
|
|
|
|
void MKLDNNPoolLayer::resetFwdPD(std::shared_ptr<pool_fwd::primitive_desc>& pd,
|
|
MKLDNNMatrixPtr in,
|
|
MKLDNNMatrixPtr out) {
|
|
memory::dims kernels = memory::dims{fh_, fw_};
|
|
memory::dims strides = memory::dims{sh_, sw_};
|
|
memory::dims padL = memory::dims{ph_, pw_};
|
|
memory::dims padR = getPaddingR();
|
|
padding_kind padKind = padding_kind::zero;
|
|
prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
|
|
: prop_kind::forward_training;
|
|
auto fwdDesc = pool_fwd::desc(pk,
|
|
poolAlgo_,
|
|
in->getMemoryDesc(),
|
|
out->getMemoryDesc(),
|
|
strides,
|
|
kernels,
|
|
padL,
|
|
padR,
|
|
padKind);
|
|
pd.reset(new pool_fwd::primitive_desc(fwdDesc, engine_));
|
|
|
|
// prepare workspace if necessary
|
|
workspace_ =
|
|
(passType_ != PASS_TEST && poolAlgo_ == algorithm::pooling_max)
|
|
? std::make_shared<memory>(memory(pd->workspace_primitive_desc()))
|
|
: nullptr;
|
|
}
|
|
|
|
void MKLDNNPoolLayer::resetFwdPipeline(
|
|
std::vector<primitive>& pipeline,
|
|
std::shared_ptr<pool_fwd::primitive_desc>& pd,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& out) {
|
|
fwd_ = workspace_
|
|
? std::make_shared<pool_fwd>(pool_fwd(*pd, *in, *out, *workspace_))
|
|
: std::make_shared<pool_fwd>(pool_fwd(*pd, *in, *out));
|
|
pipeline.push_back(*fwd_);
|
|
}
|
|
|
|
void MKLDNNPoolLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& out) {
|
|
CHECK(inVals_[0] && outVal_);
|
|
resetOutGrad(out, outVal_->getPrimitiveDesc());
|
|
resetInGrad(in, inVals_[0]->getPrimitiveDesc());
|
|
}
|
|
|
|
void MKLDNNPoolLayer::resetBwdPD(std::shared_ptr<pool_bwd::primitive_desc>& pd,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& out) {
|
|
pd = nullptr;
|
|
if (in == nullptr) {
|
|
return;
|
|
}
|
|
memory::dims kernels = memory::dims{fh_, fw_};
|
|
memory::dims strides = memory::dims{sh_, sw_};
|
|
memory::dims padL = memory::dims{ph_, pw_};
|
|
memory::dims padR = getPaddingR();
|
|
CHECK(out);
|
|
auto bwdDesc = pool_bwd::desc(poolAlgo_,
|
|
in->getMemoryDesc(),
|
|
out->getMemoryDesc(),
|
|
strides,
|
|
kernels,
|
|
padL,
|
|
padR,
|
|
padding_kind::zero);
|
|
pd.reset(new pool_bwd::primitive_desc(bwdDesc, engine_, *fwdPD_));
|
|
}
|
|
|
|
void MKLDNNPoolLayer::resetBwdPipeline(
|
|
std::vector<primitive>& pipeline,
|
|
std::shared_ptr<pool_bwd::primitive_desc>& pd,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& out) {
|
|
if (pd == nullptr) {
|
|
return;
|
|
}
|
|
|
|
bwdData_ =
|
|
workspace_
|
|
? std::make_shared<pool_bwd>(pool_bwd(*pd, *out, *workspace_, *in))
|
|
: std::make_shared<pool_bwd>(pool_bwd(*pd, *out, *in));
|
|
pipeline.push_back(*bwdData_);
|
|
}
|
|
|
|
} // namespace paddle
|