You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
234 lines
8.4 KiB
234 lines
8.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "ROIPoolLayer.h"
|
|
#include <cfloat>
|
|
|
|
namespace paddle {
|
|
|
|
REGISTER_LAYER(roi_pool, ROIPoolLayer);
|
|
|
|
bool ROIPoolLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
Layer::init(layerMap, parameterMap);
|
|
|
|
const ROIPoolConfig& layerConf = config_.inputs(0).roi_pool_conf();
|
|
pooledWidth_ = layerConf.pooled_width();
|
|
pooledHeight_ = layerConf.pooled_height();
|
|
spatialScale_ = layerConf.spatial_scale();
|
|
|
|
return true;
|
|
}
|
|
|
|
void ROIPoolLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
|
|
const ROIPoolConfig& layerConf = config_.inputs(0).roi_pool_conf();
|
|
height_ = getInput(0).getFrameHeight();
|
|
if (!height_) height_ = layerConf.height();
|
|
width_ = getInput(0).getFrameWidth();
|
|
if (!width_) width_ = layerConf.width();
|
|
channels_ = getInputValue(0)->getWidth() / width_ / height_;
|
|
|
|
size_t batchSize = getInput(0).getBatchSize();
|
|
size_t numROIs = getInput(1).getBatchSize();
|
|
|
|
MatrixPtr dataValue = getInputValue(0);
|
|
MatrixPtr roiValue = getInputValue(1);
|
|
resetOutput(numROIs, channels_ * pooledHeight_ * pooledWidth_);
|
|
MatrixPtr outputValue = getOutputValue();
|
|
|
|
if (useGpu_) { // TODO(guosheng): implement on GPU later
|
|
MatrixPtr dataCpuBuffer;
|
|
Matrix::resizeOrCreate(dataCpuBuffer,
|
|
dataValue->getHeight(),
|
|
dataValue->getWidth(),
|
|
false,
|
|
false);
|
|
MatrixPtr roiCpuBuffer;
|
|
Matrix::resizeOrCreate(roiCpuBuffer,
|
|
roiValue->getHeight(),
|
|
roiValue->getWidth(),
|
|
false,
|
|
false);
|
|
dataCpuBuffer->copyFrom(*dataValue);
|
|
roiCpuBuffer->copyFrom(*roiValue);
|
|
dataValue = dataCpuBuffer;
|
|
roiValue = roiCpuBuffer;
|
|
MatrixPtr outputCpuBuffer;
|
|
Matrix::resizeOrCreate(outputCpuBuffer,
|
|
outputValue->getHeight(),
|
|
outputValue->getWidth(),
|
|
false,
|
|
false);
|
|
outputCpuBuffer->copyFrom(*outputValue);
|
|
outputValue = outputCpuBuffer;
|
|
}
|
|
|
|
real* bottomData = dataValue->getData();
|
|
size_t batchOffset = dataValue->getWidth();
|
|
size_t channelOffset = height_ * width_;
|
|
real* bottomROIs = roiValue->getData();
|
|
size_t roiOffset = roiValue->getWidth();
|
|
size_t poolChannelOffset = pooledHeight_ * pooledWidth_;
|
|
|
|
real* outputData = outputValue->getData();
|
|
real* argmaxData = nullptr;
|
|
if (passType != PASS_TEST) {
|
|
Matrix::resizeOrCreate(maxIdxs_,
|
|
numROIs,
|
|
channels_ * pooledHeight_ * pooledWidth_,
|
|
false,
|
|
false);
|
|
argmaxData = maxIdxs_->getData();
|
|
}
|
|
|
|
for (size_t n = 0; n < numROIs; ++n) {
|
|
// the first five elememts of each RoI should be:
|
|
// batch_idx, roi_x_start, roi_y_start, roi_x_end, roi_y_end
|
|
size_t roiBatchIdx = bottomROIs[0];
|
|
size_t roiStartW = round(bottomROIs[1] * spatialScale_);
|
|
size_t roiStartH = round(bottomROIs[2] * spatialScale_);
|
|
size_t roiEndW = round(bottomROIs[3] * spatialScale_);
|
|
size_t roiEndH = round(bottomROIs[4] * spatialScale_);
|
|
CHECK_GE(roiBatchIdx, 0UL);
|
|
CHECK_LT(roiBatchIdx, batchSize);
|
|
size_t roiHeight =
|
|
std::max(roiEndH - roiStartH + 1, static_cast<size_t>(1));
|
|
size_t roiWidth = std::max(roiEndW - roiStartW + 1, static_cast<size_t>(1));
|
|
real binSizeH =
|
|
static_cast<real>(roiHeight) / static_cast<real>(pooledHeight_);
|
|
real binSizeW =
|
|
static_cast<real>(roiWidth) / static_cast<real>(pooledWidth_);
|
|
real* batchData = bottomData + batchOffset * roiBatchIdx;
|
|
for (size_t c = 0; c < channels_; ++c) {
|
|
for (size_t ph = 0; ph < pooledHeight_; ++ph) {
|
|
for (size_t pw = 0; pw < pooledWidth_; ++pw) {
|
|
size_t hstart = static_cast<size_t>(std::floor(ph * binSizeH));
|
|
size_t wstart = static_cast<size_t>(std::floor(pw * binSizeW));
|
|
size_t hend = static_cast<size_t>(std::ceil((ph + 1) * binSizeH));
|
|
size_t wend = static_cast<size_t>(std::ceil((pw + 1) * binSizeW));
|
|
hstart = std::min(
|
|
std::max(hstart + roiStartH, static_cast<size_t>(0)), height_);
|
|
wstart = std::min(
|
|
std::max(wstart + roiStartW, static_cast<size_t>(0)), width_);
|
|
hend = std::min(std::max(hend + roiStartH, static_cast<size_t>(0)),
|
|
height_);
|
|
wend = std::min(std::max(wend + roiStartW, static_cast<size_t>(0)),
|
|
width_);
|
|
|
|
bool isEmpty = (hend <= hstart) || (wend <= wstart);
|
|
size_t poolIndex = ph * pooledWidth_ + pw;
|
|
outputData[poolIndex] = isEmpty ? 0 : -FLT_MAX;
|
|
if (argmaxData) {
|
|
argmaxData[poolIndex] = -1;
|
|
}
|
|
|
|
for (size_t h = hstart; h < hend; ++h) {
|
|
for (size_t w = wstart; w < wend; ++w) {
|
|
size_t index = h * width_ + w;
|
|
if (batchData[index] > outputData[poolIndex]) {
|
|
outputData[poolIndex] = batchData[index];
|
|
if (argmaxData) {
|
|
argmaxData[poolIndex] = index;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
batchData += channelOffset;
|
|
outputData += poolChannelOffset;
|
|
if (argmaxData) {
|
|
argmaxData += poolChannelOffset;
|
|
}
|
|
}
|
|
bottomROIs += roiOffset;
|
|
}
|
|
if (useGpu_) {
|
|
getOutputValue()->copyFrom(*outputValue);
|
|
}
|
|
}
|
|
|
|
void ROIPoolLayer::backward(const UpdateCallback& callback) {
|
|
MatrixPtr inGradValue = getInputGrad(0);
|
|
MatrixPtr outGradValue = getOutputGrad();
|
|
MatrixPtr roiValue = getInputValue(1);
|
|
|
|
if (useGpu_) {
|
|
MatrixPtr inGradCpuBuffer;
|
|
Matrix::resizeOrCreate(inGradCpuBuffer,
|
|
inGradValue->getHeight(),
|
|
inGradValue->getWidth(),
|
|
false,
|
|
false);
|
|
MatrixPtr outGradCpuBuffer;
|
|
Matrix::resizeOrCreate(outGradCpuBuffer,
|
|
outGradValue->getHeight(),
|
|
outGradValue->getWidth(),
|
|
false,
|
|
false);
|
|
MatrixPtr roiCpuBuffer;
|
|
Matrix::resizeOrCreate(roiCpuBuffer,
|
|
roiValue->getHeight(),
|
|
roiValue->getWidth(),
|
|
false,
|
|
false);
|
|
inGradCpuBuffer->copyFrom(*inGradValue);
|
|
outGradCpuBuffer->copyFrom(*outGradValue);
|
|
roiCpuBuffer->copyFrom(*roiValue);
|
|
inGradValue = inGradCpuBuffer;
|
|
outGradValue = outGradCpuBuffer;
|
|
roiValue = roiCpuBuffer;
|
|
}
|
|
|
|
real* bottomROIs = roiValue->getData();
|
|
size_t numROIs = getInput(1).getBatchSize();
|
|
size_t roiOffset = getInputValue(1)->getWidth();
|
|
|
|
real* inDiffData = inGradValue->getData();
|
|
size_t batchOffset = getInputValue(0)->getWidth();
|
|
size_t channelOffset = height_ * width_;
|
|
|
|
real* outDiffData = outGradValue->getData();
|
|
size_t poolChannelOffset = pooledHeight_ * pooledWidth_;
|
|
real* argmaxData = maxIdxs_->getData();
|
|
|
|
for (size_t n = 0; n < numROIs; ++n) {
|
|
size_t roiBatchIdx = bottomROIs[0];
|
|
real* batchDiffData = inDiffData + batchOffset * roiBatchIdx;
|
|
for (size_t c = 0; c < channels_; ++c) {
|
|
for (size_t ph = 0; ph < pooledHeight_; ++ph) {
|
|
for (size_t pw = 0; pw < pooledWidth_; ++pw) {
|
|
size_t poolIndex = ph * pooledWidth_ + pw;
|
|
if (argmaxData[poolIndex] > 0) {
|
|
size_t index = static_cast<size_t>(argmaxData[poolIndex]);
|
|
batchDiffData[index] += outDiffData[poolIndex];
|
|
}
|
|
}
|
|
}
|
|
batchDiffData += channelOffset;
|
|
outDiffData += poolChannelOffset;
|
|
argmaxData += poolChannelOffset;
|
|
}
|
|
bottomROIs += roiOffset;
|
|
}
|
|
|
|
if (useGpu_) {
|
|
getInputGrad(0)->copyFrom(*inGradValue);
|
|
}
|
|
}
|
|
|
|
} // namespace paddle
|