You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
188 lines
6.5 KiB
188 lines
6.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "Layer.h"
|
|
#include "paddle/math/Matrix.h"
|
|
#include "paddle/math/Vector.h"
|
|
#include "paddle/utils/Logging.h"
|
|
#include "paddle/utils/Stat.h"
|
|
|
|
namespace paddle {
|
|
|
|
class SubNestedSequenceLayer : public Layer {
|
|
public:
|
|
explicit SubNestedSequenceLayer(const LayerConfig& config) : Layer(config) {}
|
|
|
|
bool init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) override;
|
|
|
|
void forward(PassType passType) override;
|
|
void backward(const UpdateCallback& callback = nullptr) override;
|
|
|
|
private:
|
|
/*
|
|
* This functions generates the indices of rows in a batch according to the
|
|
* indices of selected sub-sequence in each sequence.
|
|
*
|
|
* Examples:
|
|
* selectedIndices:
|
|
* [
|
|
* [0, 1, -1],
|
|
* [0, 1, 2],
|
|
* [0, -1, -1],
|
|
* [0, 2, 3],
|
|
* ]
|
|
* inputSeqInfo:
|
|
* [
|
|
* [0,3,4],
|
|
* [4,5,7,10,15],
|
|
* [15,20],
|
|
* [20,22,23,25,28]
|
|
* ]
|
|
*
|
|
* ths output is saved to private member rowIndice_;
|
|
* [0,1,2,3,4,5,6,7,8,9,15,16,17,18,19,20,21,23,24,25,26,27]
|
|
*/
|
|
|
|
void calSelectedRows(const MatrixPtr selectedIndices,
|
|
const std::vector<std::vector<int>>& inputSeqInfo);
|
|
|
|
/*
|
|
* TODO(caoying)
|
|
* In PaddePaddle, currently all matrices are real number types,
|
|
* but the second is some selected indices of the give sequence to trim
|
|
* the nested sequence, are actually filled with int types so that storing
|
|
* int types information in real number matrices is very dangerous, since
|
|
* real numbers will be convered to int types. If a user fills this matrix
|
|
* himself, invalid data may occor.
|
|
*
|
|
* if the second input of this layer is on GPU memory, copy it to CPU memory.
|
|
*/
|
|
MatrixPtr selIdsCpu_;
|
|
|
|
/*
|
|
* reorganize sequenceStartPositions and subSequenceStartPositions
|
|
* into a 2d vector to facilitate the sequence selection process.
|
|
*/
|
|
std::vector<std::vector<int>> inputSeqInfoVec_;
|
|
|
|
/* store the final selected row indices in a batch */
|
|
IVectorPtr rowIndice_;
|
|
/* rowIndice_ and selectedRows_ actually share a same memory. */
|
|
std::vector<int> selectedRows_;
|
|
};
|
|
|
|
REGISTER_LAYER(sub_nested_seq, SubNestedSequenceLayer);
|
|
|
|
bool SubNestedSequenceLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
/* Initialize the basic parent class */
|
|
Layer::init(layerMap, parameterMap);
|
|
CHECK_EQ(2U, inputLayers_.size());
|
|
setNeedSequenceInfo(false);
|
|
return true;
|
|
}
|
|
|
|
void SubNestedSequenceLayer::calSelectedRows(
|
|
const MatrixPtr selectedIndices,
|
|
const std::vector<std::vector<int>>& inputSeqInfo) {
|
|
selectedRows_.clear();
|
|
|
|
std::vector<int> outSeqStartInfo(1, 0);
|
|
std::vector<int> outSubSeqStartInfo(1, 0);
|
|
|
|
size_t seqNum = selectedIndices->getHeight();
|
|
size_t beamSize = selectedIndices->getWidth();
|
|
for (size_t i = 0; i < seqNum; ++i) {
|
|
for (size_t j = 0; j < beamSize; ++j) {
|
|
if (selectedIndices->getElement(i, j) == -1.) break;
|
|
size_t selSubSeqIdx = selectedIndices->getElement(i, j);
|
|
CHECK_GT(inputSeqInfoVec_[i].size() - 1, selSubSeqIdx);
|
|
|
|
size_t subSeqLen = inputSeqInfoVec_[i][selSubSeqIdx + 1] -
|
|
inputSeqInfoVec_[i][selSubSeqIdx];
|
|
for (size_t k = 0; k < subSeqLen; ++k)
|
|
selectedRows_.push_back(inputSeqInfoVec_[i][selSubSeqIdx] + k);
|
|
outSubSeqStartInfo.push_back(outSubSeqStartInfo.back() + subSeqLen);
|
|
}
|
|
outSeqStartInfo.push_back(outSubSeqStartInfo.back());
|
|
}
|
|
|
|
if (useGpu_) {
|
|
rowIndice_ = IVector::create(selectedRows_.size(), useGpu_);
|
|
rowIndice_->copyFrom(selectedRows_.data(), selectedRows_.size());
|
|
} else {
|
|
rowIndice_ =
|
|
IVector::create(selectedRows_.data(), selectedRows_.size(), useGpu_);
|
|
}
|
|
|
|
// create the sequence information for the output.
|
|
ICpuGpuVector::resizeOrCreate(
|
|
output_.sequenceStartPositions, outSeqStartInfo.size(), false);
|
|
output_.sequenceStartPositions->copyFrom(
|
|
outSeqStartInfo.data(), outSeqStartInfo.size(), false);
|
|
|
|
ICpuGpuVector::resizeOrCreate(
|
|
output_.subSequenceStartPositions, outSubSeqStartInfo.size(), false);
|
|
output_.subSequenceStartPositions->copyFrom(
|
|
outSubSeqStartInfo.data(), outSubSeqStartInfo.size(), false);
|
|
}
|
|
|
|
void SubNestedSequenceLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
|
|
const Argument& inputSeq = getInput(0);
|
|
CHECK(inputSeq.hasSubseq()) << "The first input of SubNestSequence layer "
|
|
<< "must be a nested sequence.";
|
|
const MatrixPtr selectedIndices = getInputValue(1);
|
|
CHECK_EQ(size_t(inputSeq.getNumSequences()), selectedIndices->getHeight());
|
|
|
|
if (dynamic_cast<GpuMatrix*>(selectedIndices.get())) {
|
|
/*
|
|
* Currently, the second input for this layer is generated by
|
|
* kmax_sequence_score_layer whose output is always stored on CPU,
|
|
* or a data_layer which canbe on GPU.
|
|
*
|
|
* If the second input is on GPU, copy it to CPU memory, because this
|
|
* input always uses very few memory, and operations related to it are
|
|
* all logic control, not computations.
|
|
*/
|
|
Matrix::resizeOrCreate(selIdsCpu_,
|
|
selectedIndices->getHeight(),
|
|
selectedIndices->getWidth(),
|
|
false /* trans */,
|
|
false /* useGpu */);
|
|
selIdsCpu_->copyFrom(*selectedIndices);
|
|
} else {
|
|
selIdsCpu_ = selectedIndices;
|
|
}
|
|
|
|
Argument::reorganizeSeqInfo(inputSeq.sequenceStartPositions,
|
|
inputSeq.subSequenceStartPositions,
|
|
inputSeqInfoVec_);
|
|
calSelectedRows(selIdsCpu_, inputSeqInfoVec_);
|
|
|
|
resetOutput(selectedRows_.size(), getSize());
|
|
getOutputValue()->selectRows(*getInputValue(0), *rowIndice_);
|
|
}
|
|
|
|
void SubNestedSequenceLayer::backward(const UpdateCallback& callback) {
|
|
MatrixPtr inputSeqGrad = getInputGrad(0);
|
|
MatrixPtr outputGrad = getOutputGrad();
|
|
|
|
if (inputSeqGrad) outputGrad->addToRows(*inputSeqGrad, *rowIndice_);
|
|
}
|
|
|
|
} // namespace paddle
|