You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
258 lines
8.7 KiB
258 lines
8.7 KiB
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
|
|
#
|
|
# licensed under the apache license, version 2.0 (the "license");
|
|
# you may not use this file except in compliance with the license.
|
|
# you may obtain a copy of the license at
|
|
#
|
|
# http://www.apache.org/licenses/license-2.0
|
|
#
|
|
# unless required by applicable law or agreed to in writing, software
|
|
# distributed under the license is distributed on an "as is" basis,
|
|
# without warranties or conditions of any kind, either express or implied.
|
|
# see the license for the specific language governing permissions and
|
|
# limitations under the license.
|
|
import unittest
|
|
import os
|
|
import numpy as np
|
|
import time
|
|
import sys
|
|
import random
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import argparse
|
|
import functools
|
|
import contextlib
|
|
import paddle.fluid.profiler as profiler
|
|
from paddle.dataset.common import download
|
|
from PIL import Image, ImageEnhance
|
|
import math
|
|
sys.path.append('..')
|
|
import int8_inference.utility as int8_utility
|
|
|
|
random.seed(0)
|
|
np.random.seed(0)
|
|
|
|
DATA_DIM = 224
|
|
|
|
THREAD = 1
|
|
BUF_SIZE = 102400
|
|
|
|
DATA_DIR = 'data/ILSVRC2012'
|
|
|
|
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
|
|
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
|
|
|
|
|
|
# TODO(guomingz): Remove duplicated code from line 45 ~ line 114
|
|
def resize_short(img, target_size):
|
|
percent = float(target_size) / min(img.size[0], img.size[1])
|
|
resized_width = int(round(img.size[0] * percent))
|
|
resized_height = int(round(img.size[1] * percent))
|
|
img = img.resize((resized_width, resized_height), Image.LANCZOS)
|
|
return img
|
|
|
|
|
|
def crop_image(img, target_size, center):
|
|
width, height = img.size
|
|
size = target_size
|
|
if center == True:
|
|
w_start = (width - size) / 2
|
|
h_start = (height - size) / 2
|
|
else:
|
|
w_start = np.random.randint(0, width - size + 1)
|
|
h_start = np.random.randint(0, height - size + 1)
|
|
w_end = w_start + size
|
|
h_end = h_start + size
|
|
img = img.crop((w_start, h_start, w_end, h_end))
|
|
return img
|
|
|
|
|
|
def process_image(sample, mode, color_jitter, rotate):
|
|
img_path = sample[0]
|
|
|
|
img = Image.open(img_path)
|
|
|
|
img = resize_short(img, target_size=256)
|
|
img = crop_image(img, target_size=DATA_DIM, center=True)
|
|
|
|
if img.mode != 'RGB':
|
|
img = img.convert('RGB')
|
|
|
|
img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
|
|
img -= img_mean
|
|
img /= img_std
|
|
|
|
return img, sample[1]
|
|
|
|
|
|
def _reader_creator(file_list,
|
|
mode,
|
|
shuffle=False,
|
|
color_jitter=False,
|
|
rotate=False,
|
|
data_dir=DATA_DIR):
|
|
def reader():
|
|
with open(file_list) as flist:
|
|
full_lines = [line.strip() for line in flist]
|
|
if shuffle:
|
|
np.random.shuffle(full_lines)
|
|
|
|
lines = full_lines
|
|
|
|
for line in lines:
|
|
img_path, label = line.split()
|
|
img_path = os.path.join(data_dir, img_path)
|
|
if not os.path.exists(img_path):
|
|
continue
|
|
yield img_path, int(label)
|
|
|
|
mapper = functools.partial(
|
|
process_image, mode=mode, color_jitter=color_jitter, rotate=rotate)
|
|
|
|
return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)
|
|
|
|
|
|
def val(data_dir=DATA_DIR):
|
|
file_list = os.path.join(data_dir, 'val_list.txt')
|
|
return _reader_creator(file_list, 'val', shuffle=False, data_dir=data_dir)
|
|
|
|
|
|
class TestCalibrationForResnet50(unittest.TestCase):
|
|
def setUp(self):
|
|
self.int8_download = 'int8/download'
|
|
self.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
|
|
self.int8_download)
|
|
|
|
data_url = 'http://paddle-inference-dist.cdn.bcebos.com/int8/calibration_test_data.tar.gz'
|
|
data_md5 = '1b6c1c434172cca1bf9ba1e4d7a3157d'
|
|
self.data_cache_folder = self.download_data(data_url, data_md5, "data")
|
|
|
|
# reader/decorator.py requires the relative path to the data folder
|
|
cmd = 'rm -rf {0} && ln -s {1} {0}'.format("data",
|
|
self.data_cache_folder)
|
|
os.system(cmd)
|
|
|
|
self.iterations = 50
|
|
|
|
def cache_unzipping(self, target_folder, zip_path):
|
|
if not os.path.exists(target_folder):
|
|
cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder,
|
|
zip_path)
|
|
os.system(cmd)
|
|
|
|
def download_data(self, data_url, data_md5, folder_name):
|
|
download(data_url, self.int8_download, data_md5)
|
|
data_cache_folder = os.path.join(self.cache_folder, folder_name)
|
|
file_name = data_url.split('/')[-1]
|
|
zip_path = os.path.join(self.cache_folder, file_name)
|
|
self.cache_unzipping(data_cache_folder, zip_path)
|
|
return data_cache_folder
|
|
|
|
def download_resnet50_model(self):
|
|
# resnet50 fp32 data
|
|
data_url = 'http://paddle-inference-dist.cdn.bcebos.com/int8/resnet50_int8_model.tar.gz'
|
|
data_md5 = '4a5194524823d9b76da6e738e1367881'
|
|
self.model_cache_folder = self.download_data(data_url, data_md5,
|
|
"resnet50_fp32")
|
|
|
|
def run_program(self, model_path, generate_int8=False, algo='direct'):
|
|
image_shape = [3, 224, 224]
|
|
os.environ['FLAGS_use_mkldnn'] = 'True'
|
|
|
|
fluid.memory_optimize(fluid.default_main_program())
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
|
|
[infer_program, feed_dict,
|
|
fetch_targets] = fluid.io.load_inference_model(model_path, exe)
|
|
|
|
t = fluid.transpiler.InferenceTranspiler()
|
|
t.transpile(infer_program, fluid.CPUPlace())
|
|
|
|
val_reader = paddle.batch(val(), batch_size=1)
|
|
|
|
if generate_int8:
|
|
int8_model = os.path.join(os.getcwd(), "calibration_out")
|
|
|
|
if os.path.exists(int8_model):
|
|
os.system("rm -rf " + int8_model)
|
|
os.system("mkdir " + int8_model)
|
|
|
|
print("Start calibration ...")
|
|
|
|
calibrator = int8_utility.Calibrator(
|
|
program=infer_program,
|
|
pretrained_model=model_path,
|
|
algo=algo,
|
|
exe=exe,
|
|
output=int8_model,
|
|
feed_var_names=feed_dict,
|
|
fetch_list=fetch_targets)
|
|
|
|
test_info = []
|
|
cnt = 0
|
|
for batch_id, data in enumerate(val_reader()):
|
|
image = np.array(
|
|
[x[0].reshape(image_shape) for x in data]).astype("float32")
|
|
label = np.array([x[1] for x in data]).astype("int64")
|
|
label = label.reshape([-1, 1])
|
|
running_program = calibrator.sampling_program.clone(
|
|
) if generate_int8 else infer_program.clone()
|
|
for op in running_program.current_block().ops:
|
|
if op.has_attr("use_mkldnn"):
|
|
op._set_attr("use_mkldnn", True)
|
|
|
|
_, acc1, _ = exe.run(
|
|
running_program,
|
|
feed={feed_dict[0]: image,
|
|
feed_dict[1]: label},
|
|
fetch_list=fetch_targets)
|
|
if generate_int8:
|
|
calibrator.sample_data()
|
|
|
|
test_info.append(np.mean(acc1) * len(data))
|
|
cnt += len(data)
|
|
|
|
if batch_id != self.iterations - 1:
|
|
continue
|
|
|
|
break
|
|
|
|
if generate_int8:
|
|
calibrator.save_int8_model()
|
|
|
|
print(
|
|
"Calibration is done and the corresponding files are generated at {}".
|
|
format(os.path.abspath("calibration_out")))
|
|
else:
|
|
return np.sum(test_info) / cnt
|
|
|
|
def test_calibration(self):
|
|
self.download_resnet50_model()
|
|
fp32_acc1 = self.run_program(self.model_cache_folder + "/model")
|
|
self.run_program(self.model_cache_folder + "/model", True)
|
|
int8_acc1 = self.run_program("calibration_out")
|
|
delta_value = np.abs(fp32_acc1 - int8_acc1)
|
|
self.assertLess(delta_value, 0.01)
|
|
|
|
|
|
class TestCalibrationForMobilenetv1(TestCalibrationForResnet50):
|
|
def download_mobilenetv1_model(self):
|
|
# mobilenetv1 fp32 data
|
|
data_url = 'http://paddle-inference-dist.cdn.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
|
|
data_md5 = '13892b0716d26443a8cdea15b3c6438b'
|
|
self.model_cache_folder = self.download_data(data_url, data_md5,
|
|
"mobilenetv1_fp32")
|
|
|
|
def test_calibration(self):
|
|
self.download_mobilenetv1_model()
|
|
fp32_acc1 = self.run_program(self.model_cache_folder + "/model")
|
|
self.run_program(self.model_cache_folder + "/model", True, algo='KL')
|
|
int8_acc1 = self.run_program("calibration_out")
|
|
delta_value = np.abs(fp32_acc1 - int8_acc1)
|
|
self.assertLess(delta_value, 0.01)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|