You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							208 lines
						
					
					
						
							7.8 KiB
						
					
					
				
			
		
		
	
	
							208 lines
						
					
					
						
							7.8 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
 | 
						|
   Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
   you may not use this file except in compliance with the License.
 | 
						|
   You may obtain a copy of the License at
 | 
						|
   http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
   Unless required by applicable law or agreed to in writing, software
 | 
						|
   distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
   See the License for the specific language governing permissions and
 | 
						|
   limitations under the License. */
 | 
						|
 | 
						|
#include "paddle/fluid/operators/bilinear_interp_op.h"
 | 
						|
#include "paddle/fluid/platform/cuda_primitives.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
using framework::Tensor;
 | 
						|
 | 
						|
template <typename T>
 | 
						|
__global__ void KeBilinearInterpFw(
 | 
						|
    const T* in, const size_t in_img_h, const size_t in_img_w,
 | 
						|
    const size_t input_h, const size_t input_w, T* out, const size_t out_img_h,
 | 
						|
    const size_t out_img_w, const size_t output_h, const size_t output_w,
 | 
						|
    const size_t num_channels, const T ratio_h, const T ratioW) {
 | 
						|
  int nthreads = output_h * output_w;
 | 
						|
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
 | 
						|
  if (tid < nthreads) {
 | 
						|
    int out_id_h = tid / output_w;
 | 
						|
    int out_id_w = tid % output_w;
 | 
						|
    int in_img_size = input_w / num_channels;
 | 
						|
    int out_img_size = output_w / num_channels;
 | 
						|
    int channel_id = out_id_w / out_img_size;
 | 
						|
 | 
						|
    int out_img_idy = (out_id_w % out_img_size) / out_img_w;
 | 
						|
    int in_img_idy = ratio_h * out_img_idy;
 | 
						|
    int h_id = (in_img_idy < in_img_h - 1) ? 1 : 0;
 | 
						|
    T h1lambda = ratio_h * out_img_idy - in_img_idy;
 | 
						|
    T h2lambda = 1.f - h1lambda;
 | 
						|
 | 
						|
    int out_img_idx = tid % out_img_w;
 | 
						|
    int in_img_idx = ratioW * out_img_idx;
 | 
						|
    int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0;
 | 
						|
    T w1lambda = ratioW * out_img_idx - in_img_idx;
 | 
						|
    T w2lambda = 1.f - w1lambda;
 | 
						|
 | 
						|
    const T* in_pos = &in[out_id_h * input_w + channel_id * in_img_size +
 | 
						|
                          in_img_idy * in_img_w + in_img_idx];
 | 
						|
 | 
						|
    // bilinear interpolation
 | 
						|
    out[out_id_h * output_w + out_id_w] =
 | 
						|
        h2lambda * (w2lambda * in_pos[0] + w1lambda * in_pos[w_id]) +
 | 
						|
        h1lambda * (w2lambda * in_pos[h_id * in_img_w] +
 | 
						|
                    w1lambda * in_pos[h_id * in_img_w + w_id]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
__global__ void KeBilinearInterpBw(
 | 
						|
    T* in, const size_t in_img_h, const size_t in_img_w, const size_t input_h,
 | 
						|
    const size_t input_w, const T* out, const size_t out_img_h,
 | 
						|
    const size_t out_img_w, const size_t output_h, const size_t output_w,
 | 
						|
    const size_t num_channels, const T ratio_h, const T ratioW) {
 | 
						|
  int nthreads = output_h * output_w;
 | 
						|
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
 | 
						|
  if (tid < nthreads) {
 | 
						|
    int out_id_h = tid / output_w;
 | 
						|
    int out_id_w = tid % output_w;
 | 
						|
    int in_img_size = input_w / num_channels;
 | 
						|
    int out_img_size = output_w / num_channels;
 | 
						|
    int channel_id = out_id_w / out_img_size;
 | 
						|
 | 
						|
    int out_img_idy = (out_id_w % out_img_size) / out_img_w;
 | 
						|
    int in_img_idy = ratio_h * out_img_idy;
 | 
						|
    int h_id = (in_img_idy < in_img_h - 1) ? 1 : 0;
 | 
						|
    T h1lambda = ratio_h * out_img_idy - in_img_idy;
 | 
						|
    T h2lambda = 1.f - h1lambda;
 | 
						|
 | 
						|
    int out_img_idx = tid % out_img_w;
 | 
						|
    int in_img_idx = ratioW * out_img_idx;
 | 
						|
    int w_id = (in_img_idx < in_img_w - 1) ? 1 : 0;
 | 
						|
    T w1lambda = ratioW * out_img_idx - in_img_idx;
 | 
						|
    T w2lambda = 1.f - w1lambda;
 | 
						|
 | 
						|
    T* in_pos = &in[out_id_h * input_w + channel_id * in_img_size +
 | 
						|
                    in_img_idy * in_img_w + in_img_idx];
 | 
						|
    const T* out_pos = &out[out_id_h * output_w + out_id_w];
 | 
						|
    atomicAdd(&in_pos[0], h2lambda * w2lambda * out_pos[0]);
 | 
						|
    atomicAdd(&in_pos[w_id], h2lambda * w1lambda * out_pos[0]);
 | 
						|
    atomicAdd(&in_pos[h_id * in_img_w], h1lambda * w2lambda * out_pos[0]);
 | 
						|
    atomicAdd(&in_pos[h_id * in_img_w + w_id],
 | 
						|
              h1lambda * w1lambda * out_pos[0]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class BilinearInterpOpCUDAKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& ctx) const override {
 | 
						|
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
 | 
						|
                   "This kernel only runs on GPU device.");
 | 
						|
    auto* input_t = ctx.Input<Tensor>("X");      // float tensor
 | 
						|
    auto* output_t = ctx.Output<Tensor>("Out");  // float tensor
 | 
						|
    auto* input = input_t->data<T>();
 | 
						|
 | 
						|
    int out_h = ctx.Attr<int>("out_h");
 | 
						|
    int out_w = ctx.Attr<int>("out_w");
 | 
						|
    auto out_dims = output_t->dims();
 | 
						|
    auto out_size_t = ctx.Input<Tensor>("OutSize");
 | 
						|
    if (out_size_t != nullptr) {
 | 
						|
      Tensor sizes;
 | 
						|
      framework::TensorCopy(*out_size_t, platform::CPUPlace(), &sizes);
 | 
						|
      auto size_data = sizes.data<int>();
 | 
						|
      out_h = size_data[0];
 | 
						|
      out_w = size_data[1];
 | 
						|
    }
 | 
						|
    auto* output = output_t->mutable_data<T>(
 | 
						|
        {out_dims[0], out_dims[1], out_h, out_w}, ctx.GetPlace());
 | 
						|
 | 
						|
    int batch_size = input_t->dims()[0];
 | 
						|
    int channels = input_t->dims()[1];
 | 
						|
    int in_h = input_t->dims()[2];
 | 
						|
    int in_w = input_t->dims()[3];
 | 
						|
 | 
						|
    int in_hw = in_h * in_w;
 | 
						|
    int out_hw = out_h * out_w;
 | 
						|
    int in_chw = channels * in_hw;
 | 
						|
    int out_chw = channels * out_hw;
 | 
						|
 | 
						|
    T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
 | 
						|
    T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;
 | 
						|
 | 
						|
    if (in_h == out_h && in_w == out_w) {
 | 
						|
      memcpy(output, input, input_t->numel() * sizeof(T));
 | 
						|
    } else {
 | 
						|
      int threadNum = batch_size * out_chw;
 | 
						|
      int blocks = (threadNum + 1024 - 1) / 1024;
 | 
						|
 | 
						|
      KeBilinearInterpFw<
 | 
						|
          T><<<blocks, 1024, 0, ctx.cuda_device_context().stream()>>>(
 | 
						|
          input, in_h, in_w, batch_size, in_chw, output, out_h, out_w,
 | 
						|
          batch_size, out_chw, channels, ratio_h, ratio_w);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class BilinearInterpGradOpCUDAKernel : public framework::OpKernel<T> {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& ctx) const override {
 | 
						|
    auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X"));
 | 
						|
    auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out"));
 | 
						|
    auto* d_output = d_output_t->data<T>();
 | 
						|
    auto* d_input = d_input_t->mutable_data<T>(ctx.GetPlace());
 | 
						|
 | 
						|
    auto& device_ctx =
 | 
						|
        ctx.template device_context<platform::CUDADeviceContext>();
 | 
						|
    math::SetConstant<platform::CUDADeviceContext, T> zero;
 | 
						|
    zero(device_ctx, d_input_t, static_cast<T>(0.0));
 | 
						|
 | 
						|
    int out_h = ctx.Attr<int>("out_h");
 | 
						|
    int out_w = ctx.Attr<int>("out_w");
 | 
						|
 | 
						|
    auto out_size_t = ctx.Input<Tensor>("OutSize");
 | 
						|
    if (out_size_t != nullptr) {
 | 
						|
      Tensor sizes;
 | 
						|
      framework::TensorCopy(*out_size_t, platform::CPUPlace(), &sizes);
 | 
						|
      auto size_data = sizes.data<int>();
 | 
						|
      out_h = size_data[0];
 | 
						|
      out_w = size_data[1];
 | 
						|
    }
 | 
						|
 | 
						|
    int batch_size = d_input_t->dims()[0];
 | 
						|
    int channels = d_input_t->dims()[1];
 | 
						|
    int in_h = d_input_t->dims()[2];
 | 
						|
    int in_w = d_input_t->dims()[3];
 | 
						|
 | 
						|
    int in_hw = in_h * in_w;
 | 
						|
    int out_hw = out_h * out_w;
 | 
						|
    int in_chw = channels * in_hw;
 | 
						|
    int out_chw = channels * out_hw;
 | 
						|
 | 
						|
    T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
 | 
						|
    T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;
 | 
						|
 | 
						|
    if (in_h == out_h && in_w == out_w) {
 | 
						|
      memcpy(d_input, d_output, d_input_t->numel() * sizeof(T));
 | 
						|
    } else {
 | 
						|
      int threadNum = batch_size * out_chw;
 | 
						|
      int blocks = (threadNum + 1024 - 1) / 1024;
 | 
						|
 | 
						|
      KeBilinearInterpBw<
 | 
						|
          T><<<blocks, 1024, 0, ctx.cuda_device_context().stream()>>>(
 | 
						|
          d_input, in_h, in_w, batch_size, in_chw, d_output, out_h, out_w,
 | 
						|
          batch_size, out_chw, channels, ratio_h, ratio_w);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 | 
						|
 | 
						|
namespace ops = paddle::operators;
 | 
						|
REGISTER_OP_CUDA_KERNEL(bilinear_interp,
 | 
						|
                        ops::BilinearInterpOpCUDAKernel<float>);
 | 
						|
REGISTER_OP_CUDA_KERNEL(bilinear_interp_grad,
 | 
						|
                        ops::BilinearInterpGradOpCUDAKernel<float>);
 |