You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
192 lines
4.7 KiB
192 lines
4.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <cuda_fp16.h>
|
|
#include <algorithm>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace math {
|
|
|
|
template <typename T>
|
|
__device__ __forceinline__ T FromFloat(float a);
|
|
|
|
template <typename T>
|
|
__device__ __forceinline__ float ToFloat(T a);
|
|
|
|
template <typename T>
|
|
__device__ __forceinline__ T exp_func(T a);
|
|
|
|
template <typename T>
|
|
struct KeyValuePair;
|
|
|
|
template <typename T>
|
|
using kvp = KeyValuePair<T>;
|
|
|
|
// from_float
|
|
template <>
|
|
__device__ __forceinline__ float FromFloat<float>(float a) {
|
|
return a;
|
|
}
|
|
|
|
#ifdef SUPPORTS_CUDA_FP16
|
|
template <>
|
|
__device__ __forceinline__ half FromFloat<half>(float a) {
|
|
return __float2half(a);
|
|
}
|
|
#endif
|
|
|
|
// to_float
|
|
template <>
|
|
__device__ __forceinline__ float ToFloat<float>(float a) {
|
|
return a;
|
|
}
|
|
|
|
#ifdef SUPPORTS_CUDA_FP16
|
|
template <>
|
|
__device__ __forceinline__ float ToFloat<half>(half a) {
|
|
return __half2float(a);
|
|
}
|
|
#endif
|
|
|
|
template <>
|
|
__device__ __forceinline__ float exp_func<float>(float a) {
|
|
return expf(a);
|
|
}
|
|
|
|
#ifdef SUPPORTS_CUDA_FP16
|
|
template <>
|
|
__device__ __forceinline__ half exp_func<half>(half a) {
|
|
#if __CUDA_ARCH__ >= 600
|
|
return hexp(a);
|
|
#else
|
|
return FromFloat<half>(expf(ToFloat<half>(a)));
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
template <>
|
|
struct KeyValuePair<float> {
|
|
__device__ __forceinline__ KeyValuePair() {}
|
|
__device__ __forceinline__ KeyValuePair(float k, float v)
|
|
: key(k), value(v) {}
|
|
__device__ __forceinline__ KeyValuePair(const KeyValuePair &a) {
|
|
key = a.key;
|
|
value = a.value;
|
|
}
|
|
float key;
|
|
float value;
|
|
__device__ __forceinline__ KeyValuePair
|
|
operator+(const KeyValuePair &a) const {
|
|
KeyValuePair tmp;
|
|
tmp.key = key + a.key;
|
|
tmp.value = value + a.value;
|
|
return tmp;
|
|
}
|
|
};
|
|
|
|
#ifdef SUPPORTS_CUDA_FP16
|
|
template <>
|
|
struct KeyValuePair<half> {
|
|
__device__ __forceinline__ KeyValuePair() {}
|
|
__device__ __forceinline__ KeyValuePair(half k, half v) : key(k), value(v) {}
|
|
__device__ __forceinline__ KeyValuePair(const KeyValuePair &a) {
|
|
key = a.key;
|
|
value = a.value;
|
|
}
|
|
half key;
|
|
half value;
|
|
__device__ __forceinline__ KeyValuePair
|
|
operator+(const KeyValuePair &a) const {
|
|
const half2 a2 = __halves2half2(key, value);
|
|
const half2 b2 = __halves2half2(a.key, a.value);
|
|
const half2 res = __hadd2(a2, b2);
|
|
return KeyValuePair(res.x, res.y);
|
|
}
|
|
};
|
|
#endif
|
|
|
|
#define FINAL_MASK 0xffffffff
|
|
#define HALF_WARP 16
|
|
#define WARP_SIZE 32
|
|
|
|
template <typename T>
|
|
__inline__ __device__ T warpReduceSum(T val, unsigned lane_mask) {
|
|
for (int mask = HALF_WARP; mask > 0; mask >>= 1)
|
|
#if __CUDA_ARCH__ >= 350 && CUDA_VERSION >= 9000
|
|
val += __shfl_xor_sync(lane_mask, val, mask, warpSize);
|
|
#else
|
|
val += __shfl_xor(val, mask, warpSize);
|
|
#endif
|
|
return val;
|
|
}
|
|
|
|
/* Calculate the sum of all elements in a block */
|
|
template <typename T>
|
|
__inline__ __device__ T blockReduceSum(T val, unsigned mask) {
|
|
static __shared__ T shared[WARP_SIZE];
|
|
int lane = threadIdx.x & 0x1f;
|
|
int wid = threadIdx.x >> 5;
|
|
|
|
val = warpReduceSum<T>(val, mask);
|
|
|
|
if (lane == 0) shared[wid] = val;
|
|
|
|
__syncthreads();
|
|
|
|
// align block_span to warpSize
|
|
int block_span = (blockDim.x + warpSize - 1) >> 5;
|
|
val = (threadIdx.x < block_span) ? shared[lane] : static_cast<T>(0.0f);
|
|
val = warpReduceSum<T>(val, mask);
|
|
|
|
return val;
|
|
}
|
|
|
|
template <typename T>
|
|
__inline__ __device__ T warpReduceMax(T val, unsigned lane_mask) {
|
|
for (int mask = HALF_WARP; mask > 0; mask >>= 1)
|
|
#if __CUDA_ARCH__ >= 350 && CUDA_VERSION >= 9000
|
|
val = max(val, __shfl_xor_sync(lane_mask, val, mask, warpSize));
|
|
#else
|
|
val = max(val, __shfl_xor(val, mask, warpSize));
|
|
#endif
|
|
return val;
|
|
}
|
|
|
|
/* Calculate the maximum of all elements in a block */
|
|
template <typename T>
|
|
__inline__ __device__ T blockReduceMax(T val, unsigned mask) {
|
|
static __shared__ T shared[WARP_SIZE];
|
|
int lane = threadIdx.x & 0x1f;
|
|
int wid = threadIdx.x >> 5;
|
|
|
|
val = warpReduceMax(val, mask);
|
|
|
|
if (lane == 0) shared[wid] = val;
|
|
|
|
__syncthreads();
|
|
|
|
// align block_span to warpSize
|
|
int block_span = (blockDim.x + warpSize - 1) >> 5;
|
|
val = (threadIdx.x < block_span) ? shared[lane] : -1e10f;
|
|
val = warpReduceMax(val, mask);
|
|
|
|
return val;
|
|
}
|
|
|
|
} // namespace math
|
|
} // namespace operators
|
|
} // namespace paddle
|