You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
150 lines
4.7 KiB
150 lines
4.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <memory>
|
|
#if !defined(PADDLE_ONLY_CPU)
|
|
#include <thrust/device_vector.h>
|
|
#include <thrust/host_vector.h>
|
|
#endif
|
|
|
|
#include "paddle/framework/ddim.h"
|
|
#include "paddle/framework/tensor.h"
|
|
#include "paddle/platform/enforce.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
/*
|
|
* LODTensor (Level of details Tensor)
|
|
* see https://en.wikipedia.org/wiki/Level_of_details for reference.
|
|
*/
|
|
class LODTensor : public Tensor {
|
|
public:
|
|
// Level save offsets of each unit.
|
|
#ifdef PADDLE_ONLY_CPU
|
|
template <typename T>
|
|
using Vector = std::vector<T>;
|
|
#else
|
|
template <typename T>
|
|
using Vector = thrust::host_vector<T>;
|
|
#endif
|
|
// LoD stores offsets of each level of units, the largest units level first,
|
|
// then the smaller units level. Each Level stores the offsets of units in
|
|
// Tesor.
|
|
class LOD : public std::vector<Vector<size_t>> {
|
|
public:
|
|
LOD SliceLevels(size_t level_begin, size_t level_end) const;
|
|
LOD SliceInLevel(size_t level, size_t elem_begin, size_t elem_end) const;
|
|
};
|
|
|
|
LODTensor() {}
|
|
explicit LODTensor(const LOD &lod) : lod_(lod) {}
|
|
|
|
virtual Tensor *Clone() const { return new LODTensor(lod_); }
|
|
|
|
/*
|
|
* Get a element from LOD.
|
|
*/
|
|
size_t lod_element(size_t level, size_t elem) const {
|
|
PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level,
|
|
NumLevels());
|
|
PADDLE_ENFORCE(elem < NumElements(level),
|
|
"element begin [%d] out of range [%d]", elem,
|
|
NumElements(level));
|
|
return (lod_)[level][elem];
|
|
}
|
|
|
|
/*
|
|
* Number of LODTensor's levels, each level has units of data, for example,
|
|
* in the sentence's view, article, paragraph, sentence are 3 levels.
|
|
*/
|
|
size_t NumLevels() const { return lod_.size(); }
|
|
/*
|
|
* Number of elements in a level.
|
|
*/
|
|
size_t NumElements(size_t level = 0) const {
|
|
PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level,
|
|
NumLevels());
|
|
// the last offset is the end of last element
|
|
return lod_[level].size() - 1;
|
|
}
|
|
|
|
/*
|
|
* Slice of levels[level_begin:level_end], with tensor shared.
|
|
*/
|
|
template <typename T>
|
|
LODTensor SliceLevels(size_t level_begin, size_t level_end) const;
|
|
|
|
/*
|
|
* Slice of elements of a level, [elem_begin: elem_end], with tensor shared.
|
|
* @note: low performance in slice lod_.
|
|
*/
|
|
template <typename T>
|
|
LODTensor SliceInLevel(size_t level, size_t elem_begin,
|
|
size_t elem_end) const;
|
|
|
|
/*
|
|
* Copy other's lod_'s content, free to mutate.
|
|
*/
|
|
void CopyLOD(const LODTensor &other) { lod_ = other.lod_; }
|
|
/*
|
|
* Determine whether LODTensor has a valid LOD info.
|
|
*/
|
|
const LOD &lod() const { return lod_; }
|
|
LOD *mutable_lod() { return &lod_; }
|
|
|
|
virtual ~LODTensor() {}
|
|
|
|
private:
|
|
LOD lod_;
|
|
};
|
|
|
|
bool operator==(const LODTensor::LOD &a, const LODTensor::LOD &b);
|
|
|
|
template <typename T>
|
|
LODTensor LODTensor::SliceLevels(size_t level_begin, size_t level_end) const {
|
|
auto new_lod = lod_.SliceLevels(level_begin, level_end);
|
|
// slice levels just need to update LOD info, each level will contains the
|
|
// whole tensor_, so no need to modify tensor_.
|
|
LODTensor new_tensor(new_lod);
|
|
new_tensor.ShareDataWith<T>(*this);
|
|
return new_tensor;
|
|
}
|
|
|
|
template <typename T>
|
|
LODTensor LODTensor::SliceInLevel(size_t level, size_t elem_begin,
|
|
size_t elem_end) const {
|
|
PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level,
|
|
NumLevels());
|
|
PADDLE_ENFORCE(elem_begin < NumElements(level),
|
|
"element begin [%d] out of range [%d]", elem_begin,
|
|
NumElements(level));
|
|
PADDLE_ENFORCE(elem_end < NumElements(level) + 1,
|
|
"element end [%d] out of range [%d]", elem_end,
|
|
NumElements(level));
|
|
|
|
auto new_lod = lod_.SliceInLevel(level, elem_begin, elem_end);
|
|
|
|
// slice elements just need to update LOD info, because offsets are not
|
|
// changed, so the original tensor_ can be reused.
|
|
LODTensor new_tensor(new_lod);
|
|
new_tensor.ShareDataWith<T>(*this);
|
|
return new_tensor;
|
|
}
|
|
|
|
} // namespace framework
|
|
} // namespace paddle
|