You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/rnn/test_wrappers.py

196 lines
7.0 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
paddle.set_default_dtype("float64")
from paddle.fluid.layers import sequence_mask
import numpy as np
import unittest
from convert import convert_params_for_cell
from rnn_numpy import GRUCell, RNN, BiRNN
class TestRNNWrapper(unittest.TestCase):
def __init__(self, time_major=True, direction="forward", place="cpu"):
super(TestRNNWrapper, self).__init__("runTest")
self.time_major = time_major
self.direction = direction
self.place = paddle.CPUPlace() if place == "cpu" \
else paddle.CUDAPlace(0)
def setUp(self):
paddle.disable_static(self.place)
cell1 = GRUCell(16, 32)
cell2 = paddle.nn.GRUCell(16, 32)
convert_params_for_cell(cell1, cell2)
rnn1 = RNN(cell1,
is_reverse=self.direction == "backward",
time_major=self.time_major)
rnn2 = paddle.nn.RNN(cell2,
is_reverse=self.direction == "backward",
time_major=self.time_major)
self.rnn1 = rnn1
self.rnn2 = rnn2
def test_with_initial_state(self):
rnn1 = self.rnn1
rnn2 = self.rnn2
x = np.random.randn(12, 4, 16)
if not self.time_major:
x = np.transpose(x, [1, 0, 2])
prev_h = np.random.randn(4, 32)
y1, h1 = rnn1(x, prev_h)
y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h))
np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
def test_with_zero_state(self):
rnn1 = self.rnn1
rnn2 = self.rnn2
x = np.random.randn(12, 4, 16)
if not self.time_major:
x = np.transpose(x, [1, 0, 2])
y1, h1 = rnn1(x)
y2, h2 = rnn2(paddle.to_tensor(x))
np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
def test_with_input_lengths(self):
rnn1 = self.rnn1
rnn2 = self.rnn2
x = np.random.randn(12, 4, 16)
if not self.time_major:
x = np.transpose(x, [1, 0, 2])
sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)
y1, h1 = rnn1(x, sequence_length=sequence_length)
seq_len = paddle.to_tensor(sequence_length)
mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
if self.time_major:
mask = paddle.transpose(mask, [1, 0])
y2, h2 = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
mask = paddle.unsqueeze(mask, -1)
y2 = paddle.multiply(y2, mask)
np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
def runTest(self):
self.test_with_initial_state()
self.test_with_zero_state()
self.test_with_input_lengths()
class TestBiRNNWrapper(unittest.TestCase):
def __init__(self, time_major=True, place="cpu"):
super(TestBiRNNWrapper, self).__init__("runTest")
self.time_major = time_major
self.place = paddle.CPUPlace() if place == "cpu" \
else paddle.CUDAPlace(0)
def setUp(self):
paddle.disable_static(self.place)
fw_cell1 = GRUCell(16, 32)
bw_cell1 = GRUCell(16, 32)
fw_cell2 = paddle.nn.GRUCell(16, 32)
bw_cell2 = paddle.nn.GRUCell(16, 32)
convert_params_for_cell(fw_cell1, fw_cell2)
convert_params_for_cell(bw_cell1, bw_cell2)
rnn1 = BiRNN(fw_cell1, bw_cell1, time_major=self.time_major)
rnn2 = paddle.nn.BiRNN(fw_cell2, bw_cell2, time_major=self.time_major)
self.rnn1 = rnn1
self.rnn2 = rnn2
def test_with_initial_state(self):
rnn1 = self.rnn1
rnn2 = self.rnn2
x = np.random.randn(12, 4, 16)
if not self.time_major:
x = np.transpose(x, [1, 0, 2])
fw_prev_h = np.random.randn(4, 32)
bw_prev_h = np.random.randn(4, 32)
y1, (fw_h1, bw_h1) = rnn1(x, (fw_prev_h, bw_prev_h))
y2, (fw_h2, bw_h2) = rnn2(
paddle.to_tensor(x),
(paddle.to_tensor(fw_prev_h), paddle.to_tensor(bw_prev_h)))
np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
np.testing.assert_allclose(fw_h1, fw_h2.numpy(), atol=1e-8, rtol=1e-5)
np.testing.assert_allclose(bw_h1, bw_h2.numpy(), atol=1e-8, rtol=1e-5)
def test_with_zero_state(self):
rnn1 = self.rnn1
rnn2 = self.rnn2
x = np.random.randn(12, 4, 16)
if not self.time_major:
x = np.transpose(x, [1, 0, 2])
y1, (fw_h1, bw_h1) = rnn1(x)
y2, (fw_h2, bw_h2) = rnn2(paddle.to_tensor(x))
np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
np.testing.assert_allclose(fw_h1, fw_h2.numpy(), atol=1e-8, rtol=1e-5)
np.testing.assert_allclose(bw_h1, bw_h2.numpy(), atol=1e-8, rtol=1e-5)
def test_with_input_lengths(self):
rnn1 = self.rnn1
rnn2 = self.rnn2
x = np.random.randn(12, 4, 16)
if not self.time_major:
x = np.transpose(x, [1, 0, 2])
sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)
y1, (fw_h1, bw_h1) = rnn1(x, sequence_length=sequence_length)
seq_len = paddle.to_tensor(sequence_length)
mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
if self.time_major:
mask = paddle.transpose(mask, [1, 0])
y2, (fw_h2, bw_h2) = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
mask = paddle.unsqueeze(mask, -1)
y2 = paddle.multiply(y2, mask)
np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
np.testing.assert_allclose(fw_h1, fw_h2.numpy(), atol=1e-8, rtol=1e-5)
np.testing.assert_allclose(bw_h1, bw_h2.numpy(), atol=1e-8, rtol=1e-5)
def runTest(self):
self.test_with_initial_state()
self.test_with_zero_state()
self.test_with_input_lengths()
def load_tests(loader, tests, pattern):
suite = unittest.TestSuite()
devices = ["cpu", "gpu"] if paddle.fluid.is_compiled_with_cuda() \
else ["cpu"]
for direction in ["forward", "backward"]:
for device in devices:
for time_major in [False]:
suite.addTest(TestRNNWrapper(time_major, direction, device))
suite.addTest(TestBiRNNWrapper(time_major, device))
return suite