You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							69 lines
						
					
					
						
							2.5 KiB
						
					
					
				
			
		
		
	
	
							69 lines
						
					
					
						
							2.5 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| #include <thrust/random.h>
 | |
| #include <thrust/transform.h>
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/framework/operator.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| template <typename T>
 | |
| struct GaussianGenerator {
 | |
|   T mean_, std_;
 | |
|   unsigned int seed_;
 | |
| 
 | |
|   __host__ __device__ GaussianGenerator(T mean, T std, int seed)
 | |
|       : mean_(mean), std_(std), seed_(seed) {}
 | |
| 
 | |
|   __host__ __device__ T operator()(const unsigned int n) const {
 | |
|     thrust::minstd_rand rng;
 | |
|     rng.seed(seed_);
 | |
|     thrust::normal_distribution<T> dist(mean_, std_);
 | |
|     rng.discard(n);
 | |
|     return dist(rng);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class GPUGaussianRandomKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     auto* tensor = context.Output<framework::Tensor>("Out");
 | |
|     T* data = tensor->mutable_data<T>(context.GetPlace());
 | |
|     unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
 | |
|     if (seed == 0) {
 | |
|       std::random_device rd;
 | |
|       seed = rd();
 | |
|     }
 | |
|     T mean = static_cast<T>(context.Attr<float>("mean"));
 | |
|     T std = static_cast<T>(context.Attr<float>("std"));
 | |
|     thrust::counting_iterator<unsigned int> index_sequence_begin(0);
 | |
|     int64_t size = tensor->numel();
 | |
|     thrust::transform(index_sequence_begin, index_sequence_begin + size,
 | |
|                       thrust::device_ptr<T>(data),
 | |
|                       GaussianGenerator<T>(mean, std, seed));
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| REGISTER_OP_CUDA_KERNEL(gaussian_random,
 | |
|                         paddle::operators::GPUGaussianRandomKernel<float>,
 | |
|                         paddle::operators::GPUGaussianRandomKernel<double>);
 | |
| REGISTER_OP_CUDA_KERNEL(gaussian_random_batch_size_like,
 | |
|                         paddle::operators::GPUGaussianRandomKernel<float>,
 | |
|                         paddle::operators::GPUGaussianRandomKernel<double>);
 |