You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
90 lines
3.3 KiB
90 lines
3.3 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace tensorrt {
|
|
|
|
/*
|
|
* Pool2dOp, IPoolingLayer in TRT. This Layer doesn't has weights.
|
|
*/
|
|
class Pool2dOpConverter : public OpConverter {
|
|
public:
|
|
void operator()(const framework::proto::OpDesc& op,
|
|
const framework::Scope& scope, bool test_mode) override {
|
|
VLOG(4)
|
|
<< "convert a fluid pool2d op to tensorrt pool2d layer without bias";
|
|
framework::OpDesc op_desc(op, nullptr);
|
|
// Declare inputs
|
|
PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1);
|
|
PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1);
|
|
auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]);
|
|
|
|
bool global_pooling = boost::get<bool>(op_desc.GetAttr("global_pooling"));
|
|
std::string pool_type =
|
|
boost::get<std::string>(op_desc.GetAttr("pooling_type"));
|
|
std::vector<int> ksize =
|
|
boost::get<std::vector<int>>(op_desc.GetAttr("ksize"));
|
|
std::vector<int> strides =
|
|
boost::get<std::vector<int>>(op_desc.GetAttr("strides"));
|
|
std::vector<int> paddings =
|
|
boost::get<std::vector<int>>(op_desc.GetAttr("paddings"));
|
|
|
|
nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
|
|
if (global_pooling == true) {
|
|
nvinfer1::Dims input_shape = input1->getDimensions();
|
|
int nbDims = input_shape.nbDims;
|
|
nv_ksize.d[0] = input_shape.d[nbDims - 2];
|
|
nv_ksize.d[1] = input_shape.d[nbDims - 1];
|
|
}
|
|
const nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
|
|
const nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);
|
|
|
|
PADDLE_ENFORCE_EQ(input1->getDimensions().nbDims, 3UL);
|
|
|
|
nvinfer1::PoolingType nv_pool_type = nvinfer1::PoolingType::kMAX;
|
|
if (pool_type == "max") {
|
|
nv_pool_type = nvinfer1::PoolingType::kMAX;
|
|
} else if (pool_type == "avg") {
|
|
nv_pool_type = nvinfer1::PoolingType::kAVERAGE;
|
|
} else {
|
|
PADDLE_THROW("TensorRT unsupported pooling type!");
|
|
}
|
|
|
|
auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling,
|
|
*const_cast<nvinfer1::ITensor*>(input1),
|
|
nv_pool_type, nv_ksize);
|
|
PADDLE_ENFORCE_NOT_NULL(layer, "pool layer could not be created.");
|
|
layer->setStride(nv_strides);
|
|
layer->setPadding(nv_paddings);
|
|
|
|
auto output_name = op_desc.Output("Out")[0];
|
|
layer->setName(("pool2d (Output: " + output_name + ")").c_str());
|
|
layer->getOutput(0)->setName(output_name.c_str());
|
|
engine_->SetITensor(output_name, layer->getOutput(0));
|
|
if (test_mode) {
|
|
engine_->DeclareOutput(output_name);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace tensorrt
|
|
} // namespace inference
|
|
} // namespace paddle
|
|
|
|
USE_OP(pool2d);
|
|
REGISTER_TRT_OP_CONVERTER(pool2d, Pool2dOpConverter);
|