You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
227 lines
7.6 KiB
227 lines
7.6 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
/*
|
|
* This file implements a UT framework to make the validation of transforming
|
|
* Fluid Op to TRT Layer.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/lod_tensor.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/tensor_util.h"
|
|
#include "paddle/fluid/inference/analysis/helper.h"
|
|
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
|
|
#include "paddle/fluid/inference/tensorrt/engine.h"
|
|
#include "paddle/fluid/inference/utils/singleton.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace tensorrt {
|
|
|
|
/*
|
|
* Get a random float value between [low, high]
|
|
*/
|
|
float random(float low, float high) {
|
|
static std::random_device rd;
|
|
static std::mt19937 mt(rd());
|
|
std::uniform_real_distribution<double> dist(low, high);
|
|
return dist(mt);
|
|
}
|
|
|
|
void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
|
|
const platform::DeviceContext& ctx) {
|
|
auto dims = tensor->dims();
|
|
size_t num_elements = analysis::AccuDims(dims, dims.size());
|
|
PADDLE_ENFORCE_GT(num_elements, 0);
|
|
|
|
platform::CPUPlace cpu_place;
|
|
framework::LoDTensor temp_tensor;
|
|
temp_tensor.Resize(dims);
|
|
auto* temp_data = temp_tensor.mutable_data<float>(cpu_place);
|
|
|
|
for (size_t i = 0; i < num_elements; i++) {
|
|
*(temp_data + i) = random(0., 1.);
|
|
}
|
|
|
|
TensorCopySync(temp_tensor, place, tensor);
|
|
}
|
|
|
|
/*
|
|
* Help to validate the correctness between Fluid Op and the corresponding TRT
|
|
* layer.
|
|
*/
|
|
class TRTConvertValidation {
|
|
public:
|
|
TRTConvertValidation() = delete;
|
|
|
|
TRTConvertValidation(int max_batch_size,
|
|
const std::unordered_set<std::string>& parameters,
|
|
framework::Scope& scope, // NOLINT
|
|
int workspace_size = 1 << 10, bool if_add_batch = true)
|
|
: parameters_(parameters),
|
|
scope_(scope),
|
|
if_add_batch_(if_add_batch),
|
|
max_batch_size_(max_batch_size) {
|
|
// create engine.
|
|
engine_.reset(new TensorRTEngine(max_batch_size, workspace_size, &stream_));
|
|
engine_->InitNetwork();
|
|
|
|
PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
|
|
}
|
|
|
|
// Declare a Variable as input with random initialization.
|
|
void DeclInputVar(const std::string& name, const std::vector<int> tensor_dims,
|
|
const nvinfer1::Dims& trt_dims) {
|
|
DeclVar(name, tensor_dims);
|
|
engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, trt_dims);
|
|
}
|
|
|
|
void DeclInputVar(const std::string& name, const nvinfer1::Dims& dims) {
|
|
DeclVar(name, dims);
|
|
// Declare TRT inputs.
|
|
engine_->DeclareInput(name, nvinfer1::DataType::kFLOAT, dims);
|
|
}
|
|
|
|
void DeclParamVar(const std::string& name, const std::vector<int> dim_vec) {
|
|
DeclVar(name, dim_vec);
|
|
}
|
|
|
|
// Declare a parameter varaible in the scope.
|
|
void DeclParamVar(const std::string& name, const nvinfer1::Dims& dims) {
|
|
DeclVar(name, dims, true);
|
|
}
|
|
|
|
void DeclOutputVar(const std::string& name, const std::vector<int> dim_vec) {
|
|
DeclVar(name, dim_vec);
|
|
}
|
|
|
|
void DeclOutputVar(const std::string& name, const nvinfer1::Dims& dims) {
|
|
DeclVar(name, dims);
|
|
}
|
|
|
|
void DeclVar(const std::string& name, const std::vector<int> dim_vec) {
|
|
platform::CUDAPlace place;
|
|
platform::CUDADeviceContext ctx(place);
|
|
|
|
auto* x = scope_.Var(name);
|
|
auto* x_tensor = x->GetMutable<framework::LoDTensor>();
|
|
x_tensor->Resize(framework::make_ddim(dim_vec));
|
|
RandomizeTensor(x_tensor, place, ctx);
|
|
}
|
|
// Declare a variable in a fluid Scope.
|
|
void DeclVar(const std::string& name, const nvinfer1::Dims& dims,
|
|
bool is_param = false) {
|
|
// Init Fluid tensor.
|
|
std::vector<int> dim_vec(dims.d, dims.d + dims.nbDims);
|
|
// There is no batchsize in ITensor's shape, but We should add it to
|
|
// tensor's shape of fluid. If the variable is not parameter and the
|
|
// if_add_batch_ flag is true, add the max batchsize to dim_vec.
|
|
if (is_param != true && if_add_batch_ == true)
|
|
dim_vec.insert(dim_vec.begin(), max_batch_size_);
|
|
|
|
DeclVar(name, dim_vec);
|
|
}
|
|
|
|
void SetOp(const framework::proto::OpDesc& desc) {
|
|
op_ = framework::OpRegistry::CreateOp(desc);
|
|
|
|
Singleton<OpConverter>::Global().ConvertOp(
|
|
desc, parameters_, scope_, engine_.get(), true /*test_mode*/);
|
|
|
|
engine_->FreezeNetwork();
|
|
|
|
// Declare outputs.
|
|
op_desc_.reset(new framework::OpDesc(desc, nullptr));
|
|
|
|
// Set Inputs.
|
|
for (const auto& input : op_desc_->InputArgumentNames()) {
|
|
if (parameters_.count(input)) continue;
|
|
auto* var = scope_.FindVar(input);
|
|
PADDLE_ENFORCE(var);
|
|
auto tensor = var->GetMutable<framework::LoDTensor>();
|
|
|
|
engine_->SetInputFromGPU(
|
|
input, static_cast<void*>(tensor->data<void>()),
|
|
sizeof(float) *
|
|
analysis::AccuDims(tensor->dims(), tensor->dims().size()));
|
|
}
|
|
}
|
|
|
|
// We use the set 'neglected_output' here, because some Ops like batch norm,
|
|
// the outputs specified in the op des are only used during training,
|
|
// so we should neglect those output during inference.
|
|
void Execute(int batch_size,
|
|
std::unordered_set<std::string> neglected_output = {}) {
|
|
// Execute Fluid Op
|
|
PADDLE_ENFORCE_LE(batch_size, max_batch_size_);
|
|
platform::CUDAPlace place;
|
|
platform::CUDADeviceContext ctx(place);
|
|
op_->Run(scope_, place);
|
|
// Execute TRT.
|
|
engine_->Execute(batch_size);
|
|
cudaStreamSynchronize(*engine_->stream());
|
|
|
|
ASSERT_FALSE(op_desc_->OutputArgumentNames().empty());
|
|
const size_t output_space_size = 3000;
|
|
for (const auto& output : op_desc_->OutputArgumentNames()) {
|
|
if (neglected_output.count(output)) continue;
|
|
std::vector<float> fluid_out;
|
|
std::vector<float> trt_out(output_space_size);
|
|
engine_->GetOutputInCPU(output, &trt_out[0], output_space_size);
|
|
cudaStreamSynchronize(*engine_->stream());
|
|
|
|
auto* var = scope_.FindVar(output);
|
|
auto tensor = var->GetMutable<framework::LoDTensor>();
|
|
framework::TensorToVector(*tensor, ctx, &fluid_out);
|
|
|
|
size_t fluid_out_size = fluid_out.size();
|
|
if (if_add_batch_ == true) {
|
|
fluid_out_size =
|
|
batch_size * (framework::product(tensor->dims()) / max_batch_size_);
|
|
}
|
|
// Compare two output
|
|
ASSERT_FALSE(fluid_out.empty());
|
|
for (size_t i = 0; i < fluid_out_size; i++) {
|
|
// Loose the threshold for CI in different machine model.
|
|
EXPECT_LT(std::abs(fluid_out[i] - trt_out[i]), 2e-5);
|
|
}
|
|
}
|
|
}
|
|
|
|
framework::Scope& scope() { return scope_; }
|
|
|
|
private:
|
|
std::unique_ptr<TensorRTEngine> engine_;
|
|
cudaStream_t stream_;
|
|
std::unique_ptr<framework::OperatorBase> op_;
|
|
std::unique_ptr<framework::OpDesc> op_desc_;
|
|
const std::unordered_set<std::string>& parameters_;
|
|
framework::Scope& scope_;
|
|
// The ITensor of trt does not cotain the batch size,
|
|
// bug, in most cases, we need to set batch size for
|
|
// fluid's tensor shape. This variable indicates
|
|
// whether to add batch size to tensor shape of fluid.
|
|
bool if_add_batch_;
|
|
int max_batch_size_;
|
|
};
|
|
|
|
} // namespace tensorrt
|
|
} // namespace inference
|
|
} // namespace paddle
|