You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
285 lines
11 KiB
285 lines
11 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import six
|
|
import warnings
|
|
import sys
|
|
|
|
from .initializer import Initializer, Xavier, Constant
|
|
from .regularizer import WeightDecayRegularizer
|
|
from paddle.fluid.data_feeder import check_type
|
|
|
|
__all__ = [
|
|
'ParamAttr',
|
|
'WeightNormParamAttr',
|
|
]
|
|
|
|
|
|
class ParamAttr(object):
|
|
"""
|
|
Create a object to represent the attribute of parameter. The attributes are:
|
|
name, initializer, learning rate, regularizer, trainable, gradient clip,
|
|
and model average.
|
|
|
|
Note:
|
|
``gradient_clip`` of ``ParamAttr`` HAS BEEN DEPRECATED since 2.0.
|
|
It is recommended to set ``grad_clip`` in ``optimizer`` to clip gradient.
|
|
There are three clipping strategies: :ref:`api_fluid_clip_GradientClipByGlobalNorm` ,
|
|
:ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` .
|
|
|
|
Parameters:
|
|
name (str, optional): The parameter's name. Default None, meaning that the name
|
|
would be created automatically.
|
|
initializer (Initializer, optional): The method to initial this parameter. Default
|
|
None, meaning that the weight parameter is initialized by Xavier initializer,
|
|
and the bias parameter is initialized by 0.
|
|
learning_rate (float): The parameter's learning rate. The learning rate when
|
|
optimize is the global learning rates times the parameter's learning rate times
|
|
the factor of learning rate scheduler. Default 1.0.
|
|
regularizer (WeightDecayRegularizer, optional): Regularization strategy. There are two method:
|
|
:ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If
|
|
regularizer is also set in ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ),
|
|
that regularizer setting in optimizer will be ignored. Default None, meaning there is
|
|
no regularization.
|
|
trainable (bool): Whether this parameter is trainable. Default True.
|
|
do_model_average (bool): Whether this parameter should do model average
|
|
when model average is enabled. Default False.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
w_param_attrs = fluid.ParamAttr(name="fc_weight",
|
|
learning_rate=0.5,
|
|
regularizer=fluid.regularizer.L2Decay(1.0),
|
|
trainable=True)
|
|
print(w_param_attrs.name) # "fc_weight"
|
|
x = fluid.data(name='X', shape=[None, 1], dtype='float32')
|
|
y_predict = fluid.layers.fc(input=x, size=10, param_attr=w_param_attrs)
|
|
"""
|
|
|
|
def __init__(self,
|
|
name=None,
|
|
initializer=None,
|
|
learning_rate=1.0,
|
|
regularizer=None,
|
|
trainable=True,
|
|
do_model_average=True):
|
|
|
|
if sys.version_info.major == 2:
|
|
check_type(name, "name", (str, type(None), unicode), "ParamAttr")
|
|
else:
|
|
check_type(name, "name", (str, type(None)), "ParamAttr")
|
|
check_type(learning_rate, "learning_rate", (float, int), "ParamAttr")
|
|
check_type(trainable, "trainable", (bool), "ParamAttr")
|
|
check_type(do_model_average, "do_model_average", (bool), "ParamAttr")
|
|
|
|
self.name = name
|
|
if self.name == "":
|
|
raise ValueError("name of ParamAttr can not be empty str")
|
|
|
|
self.initializer = initializer
|
|
self.learning_rate = learning_rate
|
|
self.regularizer = regularizer
|
|
self.trainable = trainable
|
|
self.do_model_average = do_model_average
|
|
|
|
def _set_default_initializer(self, initializer):
|
|
"""
|
|
Set the default initializer, the initializer should be Constant,
|
|
Uniform, Normal, Xavier, MSRA.
|
|
|
|
Args:
|
|
initializer(Initializer): the initializer to set.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
if initializer is None:
|
|
if self.initializer is None:
|
|
raise ValueError("ParamAttr.initializer is not set")
|
|
return
|
|
|
|
if self.initializer is not None:
|
|
return
|
|
|
|
self.initializer = initializer
|
|
|
|
def _set_default_param_initializer(self):
|
|
"""
|
|
Set the default initializer for the parameter with Xavier.
|
|
|
|
Args:
|
|
None.
|
|
|
|
Returns:
|
|
None.
|
|
"""
|
|
self._set_default_initializer(Xavier())
|
|
|
|
def _set_default_bias_initializer(self):
|
|
"""
|
|
Set the default initializer for the bias with Constant(0.0).
|
|
|
|
Args:
|
|
None.
|
|
|
|
Returns:
|
|
None.
|
|
"""
|
|
self._set_default_initializer(Constant(0.0))
|
|
|
|
@staticmethod
|
|
def _to_attr(arg):
|
|
"""
|
|
Create ParamAttr[s].
|
|
|
|
Args:
|
|
arg: Arguments to initialize ParamAttr[s]. arg's type can be
|
|
str, Initializer, float, WeightDecayRegularizer, BaseGradientClipAttr,
|
|
bool, ParamAttr, or a list of above type.
|
|
|
|
Returns:
|
|
ParamAttr[s]: ParamAttr[s] initialized with arg.
|
|
|
|
Raises:
|
|
arg can not initialize a ParamAttr.
|
|
"""
|
|
if arg is None:
|
|
return ParamAttr()
|
|
elif isinstance(arg, list) or isinstance(arg, tuple):
|
|
return [ParamAttr._to_attr(a) for a in arg]
|
|
elif isinstance(arg, ParamAttr):
|
|
return arg
|
|
elif isinstance(arg, six.string_types):
|
|
return ParamAttr(name=arg)
|
|
elif isinstance(arg, Initializer):
|
|
return ParamAttr(initializer=arg)
|
|
elif isinstance(arg, WeightDecayRegularizer):
|
|
return ParamAttr(regularizer=arg)
|
|
elif isinstance(arg, bool):
|
|
return ParamAttr._to_attr(None) if arg else False
|
|
else:
|
|
raise TypeError("{0} cast to ParamAttr".format(type(arg)))
|
|
|
|
def _to_kwargs(self, with_initializer=False):
|
|
"""
|
|
Returns the attributes of this parameter.
|
|
|
|
Args:
|
|
with_initializer(bool): Whether to add initializer attr.
|
|
|
|
Returns:
|
|
Parameter attributes(map): The attributes of this parameter.
|
|
"""
|
|
kwargs = {
|
|
'name': self.name,
|
|
'optimize_attr': {
|
|
'learning_rate': self.learning_rate
|
|
},
|
|
'regularizer': self.regularizer,
|
|
'trainable': self.trainable,
|
|
'do_model_average': self.do_model_average
|
|
}
|
|
if with_initializer:
|
|
kwargs['initializer'] = self.initializer
|
|
return kwargs
|
|
|
|
|
|
class WeightNormParamAttr(ParamAttr):
|
|
"""
|
|
:api_attr: Static Graph
|
|
|
|
Note:
|
|
Please use 'paddle.nn.utils.weight_norm' in dygraph mode.
|
|
|
|
Parameter of weight Norm. Weight Norm is a reparameterization of the weight vectors
|
|
in a neural network that decouples the magnitude of those weight vectors from
|
|
their direction. Weight Norm has been implemented as discussed in this
|
|
paper: `Weight Normalization: A Simple Reparameterization to Accelerate
|
|
Training of Deep Neural Networks
|
|
<https://arxiv.org/pdf/1602.07868.pdf>`_.
|
|
|
|
Note:
|
|
``gradient_clip`` of ``WeightNormParamAttr`` HAS BEEN DEPRECATED since 2.0.
|
|
It is recommended to use ``minimize(loss, grad_clip=clip)`` to clip gradient.
|
|
There are three clipping strategies: :ref:`api_fluid_clip_GradientClipByGlobalNorm` ,
|
|
:ref:`api_fluid_clip_GradientClipByNorm` , :ref:`api_fluid_clip_GradientClipByValue` .
|
|
|
|
|
|
Args:
|
|
dim(int): Dimension over which to compute the norm. Dim is a non-negative
|
|
number which is less than the rank of weight Tensor. For Example, dim can
|
|
be chosen from 0, 1, 2, 3 for convolution whose weight shape is [cout, cin, kh, kw]
|
|
and rank is 4. Default None, meaning that all elements will be normalized.
|
|
name(str, optional): The parameter's name. Default None, meaning that the name would
|
|
be created automatically. Please refer to :ref:`api_guide_Name` for more details.
|
|
initializer(Initializer): The method to initialize this parameter, such as
|
|
``initializer = fluid.initializer.ConstantInitializer(1.0)``. Default None,
|
|
meaning that the weight parameter is initialized by Xavier initializer, and
|
|
the bias parameter is initialized by 0.
|
|
learning_rate(float32): The parameter's learning rate when
|
|
optimizer is :math:`global\_lr * parameter\_lr * scheduler\_factor`.
|
|
Default 1.0.
|
|
regularizer (WeightDecayRegularizer, optional): Regularization strategy. There are two method:
|
|
:ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If regularizer
|
|
is also set in ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ), that regularizer
|
|
setting in optimizer will be ignored. Default None, meaning there is no regularization.
|
|
trainable(bool, optional): Whether this parameter is trainable. Default True.
|
|
do_model_average(bool, optional): Whether this parameter should do model average.
|
|
Default False.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.fluid as fluid
|
|
data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
|
|
fc = fluid.layers.fc(input=data,
|
|
size=1000,
|
|
param_attr=fluid.WeightNormParamAttr(
|
|
dim=None,
|
|
name='weight_norm_param',
|
|
initializer=fluid.initializer.ConstantInitializer(1.0),
|
|
learning_rate=1.0,
|
|
regularizer=fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.1),
|
|
trainable=True,
|
|
do_model_average=False))
|
|
|
|
"""
|
|
# List to record the parameters reparameterized by weight normalization.
|
|
# If these parameters are treated as Variable rather than Parameter,
|
|
# it can be used to discriminate these parameters and help to serialize
|
|
# these paramters for inference.
|
|
params_with_weight_norm = []
|
|
|
|
def __init__(self,
|
|
dim=None,
|
|
name=None,
|
|
initializer=None,
|
|
learning_rate=1.0,
|
|
regularizer=None,
|
|
trainable=True,
|
|
do_model_average=False):
|
|
super(WeightNormParamAttr, self).__init__(
|
|
name=name,
|
|
initializer=initializer,
|
|
learning_rate=learning_rate,
|
|
regularizer=regularizer,
|
|
trainable=trainable,
|
|
do_model_average=do_model_average)
|
|
self.dim = dim
|