You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/heterbox_trainer.cc

276 lines
10 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cstdlib>
#include <string>
#include <vector>
#include "io/fs.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/data_set.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
#include "paddle/fluid/framework/trainer.h"
#if (defined PADDLE_WITH_CUDA || defined PADDLE_WITH_HIP || \
defined PADDLE_WITH_XPU) && \
(defined PADDLE_WITH_PSLIB)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
namespace paddle {
namespace framework {
void HeterBoxTrainer::Initialize(const TrainerDesc& trainer_desc,
Dataset* dataset) {
thread_num_ = trainer_desc.thread_num();
param_ = trainer_desc.downpour_param();
for (int i = 0; i < param_.dense_table_size(); ++i) {
uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
auto table = param_.dense_table(i);
dense_grad_names_[table_id].resize(table.dense_grad_name_size());
for (int j = 0; j < table.dense_grad_name_size(); ++j) {
dense_grad_names_[table_id][j] = table.dense_grad_name(j);
}
}
RegisterHeterCallback();
scale_datanorm_ = trainer_desc.scale_datanorm();
int place_num = trainer_desc.worker_places_size();
const std::vector<paddle::framework::DataFeed*> readers =
dataset->GetReaders();
for (int i = 0; i < place_num; ++i) {
int num = trainer_desc.worker_places(i);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
platform::CUDAPlace place = platform::CUDAPlace(num);
platform::CUDADeviceGuard guard(place.device);
gpuStream_t stream;
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS(hipStreamCreate(&stream));
#else
PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamCreate(&stream));
#endif
copy_streams_.push_back(stream);
places_.push_back(place);
gpuEvent_t event;
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS(
hipEventCreateWithFlags(&event, hipEventDisableTiming));
#else
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
#endif
events_.push_back(event);
#endif
#ifdef PADDLE_WITH_XPU
platform::XPUPlace place = platform::XPUPlace(num);
places_.push_back(place);
#endif
}
for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
i++) {
need_merge_var_names_.push_back(
trainer_desc.downpour_param().stat_var_names(i));
}
VLOG(3) << "going to initialize pull dense worker";
pull_dense_worker_ = PullDenseWorker::GetInstance();
pull_dense_worker_->Initialize(trainer_desc);
VLOG(3) << "initialize pull dense worker";
SetDebug(trainer_desc.debug());
fleet_ptr_ = FleetWrapper::GetInstance();
trainer_desc_ = trainer_desc;
workers_.resize(place_num);
for (int i = 0; i < place_num; ++i) {
workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
trainer_desc.device_worker_name());
workers_[i]->SetDeviceIndex(i);
workers_[i]->SetDataFeed(readers[i]);
workers_[i]->Initialize(trainer_desc);
workers_[i]->SetWorkerNum(place_num);
}
}
void HeterBoxTrainer::DumpWork(int tid) {}
void HeterBoxTrainer::RegisterHeterCallback() {
auto fleet_ptr = FleetWrapper::GetInstance();
fleet_ptr->RegisterHeterCallback([this](int worker, int taskid) {
// workers_[worker]->Schedule(taskid);
});
}
void HeterBoxTrainer::InitTrainerEnv(const ProgramDesc& main_program,
const platform::Place& place) {
for (size_t i = 0; i < places_.size(); ++i) {
workers_[i]->SetPlace(places_[i]);
workers_[i]->SetStream(copy_streams_[i]);
workers_[i]->SetEvent(events_[i]);
workers_[i]->SetReaderPlace(platform::CPUPlace());
workers_[i]->SetRootScope(root_scope_);
workers_[i]->CreateDeviceResource(main_program); // Program
workers_[i]->BindingDataFeedMemory();
#ifdef PADDLE_WITH_PSLIB
workers_[i]->CacheProgram(main_program);
#endif
}
for (size_t num = 0; num < places_.size(); ++num) {
auto place = places_[num];
Scope* scope = workers_[num]->GetThreadScope();
auto stream = copy_streams_[num];
auto event = events_[num];
auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
platform::CUDADeviceGuard guard(dev_id);
auto& block = main_program.Block(0);
for (auto& var : block.AllVars()) {
if (var->Persistable()) {
auto name = var->Name();
Variable* root_var = root_scope_->FindVar(name);
if (!root_var) {
continue;
}
LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
auto* ptr = scope->Var(name);
InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
LoDTensor* thread_tensor = ptr->GetMutable<LoDTensor>();
#define HeterMemcpyFunc(cpp_type, proto_type) \
do { \
if (root_tensor->type() == proto_type) { \
HeterMemCpy<cpp_type>(thread_tensor, root_tensor, place, stream); \
} \
} while (0)
_ForEachDataType_(HeterMemcpyFunc);
}
}
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS(hipEventRecord(event, stream));
hipEventSynchronize(event);
#else
PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventRecord(event, stream));
cudaEventSynchronize(event);
#endif
}
place_ = place;
}
template <typename T>
void HeterBoxTrainer::HeterMemCpy(LoDTensor* thread_tensor,
LoDTensor* root_tensor,
const paddle::platform::Place& thread_place,
gpuStream_t stream) {
T* thread_ptr =
thread_tensor->mutable_data<T>(root_tensor->dims(), thread_place);
T* root_ptr = root_tensor->data<T>();
if (platform::is_cpu_place(root_tensor->place())) {
memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, thread_place), thread_ptr,
platform::CPUPlace(), root_ptr,
sizeof(T) * root_tensor->numel(), stream);
} else {
memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, thread_place), thread_ptr,
BOOST_GET_CONST(platform::CUDAPlace, root_tensor->place()),
root_ptr, sizeof(T) * root_tensor->numel(), stream);
}
}
void HeterBoxTrainer::InitOtherEnv(const ProgramDesc& main_program) {
pull_dense_worker_->SetRootScope(root_scope_);
pull_dense_worker_->CreatePinVar();
for (size_t i = 0; i < places_.size(); ++i) {
pull_dense_worker_->AddThreadScope(workers_[i]->GetThreadScope());
pull_dense_worker_->AddPlace(places_[i]);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
pull_dense_worker_->AddStream(copy_streams_[i]);
#endif
}
VLOG(3) << "init other env done.";
}
void HeterBoxTrainer::Run() {
int pull_thread_num = 3 * places_.size();
for (size_t thidx = 0; thidx < places_.size(); ++thidx) {
workers_[thidx]->device_reader_->Start();
std::dynamic_pointer_cast<paddle::framework::HeterBoxWorker>(
workers_[thidx])
->ResetStat();
}
for (int i = 0; i < pull_thread_num; ++i) {
int worker_id = i % places_.size();
pull_threads_.push_back(
std::thread(&DeviceWorker::ProduceTasks, workers_[worker_id].get()));
}
for (size_t thidx = 0; thidx < places_.size(); ++thidx) {
threads_.push_back(
std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
}
}
template <typename T>
void HeterBoxTrainer::MergeToRootScope(LoDTensor* root_tensor,
LoDTensor* tensor) {
LoDTensor tmp_root;
TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root);
T* tmp_root_data = tmp_root.data<T>();
LoDTensor tmp_tensor;
TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor);
T* data = tmp_tensor.data<T>();
for (int i = 0; i < tmp_tensor.numel(); i++) {
tmp_root_data[i] += data[i];
}
TensorCopy(tmp_root, platform::CPUPlace(), root_tensor);
}
Scope* HeterBoxTrainer::GetWorkerScope(int thread_id) { return nullptr; }
void HeterBoxTrainer::Finalize() {
for (auto& th : pull_threads_) {
th.join();
}
for (auto& th : threads_) {
th.join();
}
for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
if (root_var == nullptr) {
continue;
}
LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
for (size_t j = 0; j < places_.size(); j++) {
Scope* cur_thread_scope = workers_[j]->GetThreadScope();
Variable* thread_var =
cur_thread_scope->FindVar(need_merge_var_names_[i]);
if (thread_var == nullptr) {
continue;
}
LoDTensor* thread_tensor = thread_var->GetMutable<LoDTensor>();
#define MergeCallback(cpp_type, proto_type) \
do { \
if (root_tensor->type() == proto_type) { \
if (thread_tensor->type() != proto_type) { \
VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
<< "] " << need_merge_var_names_[i] \
<< ", root tensor type=" << root_tensor->type() \
<< ", thread tensor type=" << thread_tensor->type(); \
exit(-1); \
} \
MergeToRootScope<cpp_type>(root_tensor, thread_tensor); \
} \
} while (0)
_ForEachDataType_(MergeCallback);
}
}
pull_dense_worker_->MergeDenseParam();
root_scope_->DropKids();
}
} // namespace framework
} // namespace paddle
#endif