You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tests/test_multi_thread_helper.h

91 lines
3.5 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <map>
#include <string>
#include <thread> // NOLINT
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/io.h"
void ThreadedRunInference(
const std::unique_ptr<paddle::framework::ProgramDesc>& inference_program,
paddle::framework::Executor* executor, paddle::framework::Scope* scope,
const int thread_id,
const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
const std::vector<paddle::framework::LoDTensor*>& cpu_fetchs) {
auto copy_program = std::unique_ptr<paddle::framework::ProgramDesc>(
new paddle::framework::ProgramDesc(*inference_program));
std::string feed_holder_name = "feed_" + paddle::string::to_string(thread_id);
std::string fetch_holder_name =
"fetch_" + paddle::string::to_string(thread_id);
copy_program->SetFeedHolderName(feed_holder_name);
copy_program->SetFetchHolderName(fetch_holder_name);
// 3. Get the feed_target_names and fetch_target_names
const std::vector<std::string>& feed_target_names =
copy_program->GetFeedTargetNames();
const std::vector<std::string>& fetch_target_names =
copy_program->GetFetchTargetNames();
// 4. Prepare inputs: set up maps for feed targets
std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
for (size_t i = 0; i < feed_target_names.size(); ++i) {
// Please make sure that cpu_feeds[i] is right for feed_target_names[i]
feed_targets[feed_target_names[i]] = cpu_feeds[i];
}
// 5. Define Tensor to get the outputs: set up maps for fetch targets
std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
for (size_t i = 0; i < fetch_target_names.size(); ++i) {
fetch_targets[fetch_target_names[i]] = cpu_fetchs[i];
}
// 6. Run the inference program
executor->Run(*copy_program, scope, feed_targets, fetch_targets, true,
feed_holder_name, fetch_holder_name);
}
template <typename Place>
void TestMultiThreadInference(
const std::string& dirname,
const std::vector<std::vector<paddle::framework::LoDTensor*>>& cpu_feeds,
const std::vector<std::vector<paddle::framework::LoDTensor*>>& cpu_fetchs,
const int num_threads) {
// 1. Define place, executor, scope
auto place = Place();
auto executor = paddle::framework::Executor(place);
auto* scope = new paddle::framework::Scope();
// 2. Initialize the inference_program and load parameters
std::unique_ptr<paddle::framework::ProgramDesc> inference_program =
paddle::inference::Load(executor, *scope, dirname);
std::vector<std::thread*> threads;
for (int i = 0; i < num_threads; ++i) {
threads.push_back(new std::thread(
ThreadedRunInference, std::ref(inference_program), &executor, scope, i,
std::ref(cpu_feeds[i]), std::ref(cpu_fetchs[i])));
}
for (int i = 0; i < num_threads; ++i) {
threads[i]->join();
delete threads[i];
}
delete scope;
}