You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
90 lines
3.1 KiB
90 lines
3.1 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <thrust/execution_policy.h>
|
|
#include <thrust/reduce.h>
|
|
#include "paddle/operators/accuracy_op.h"
|
|
#include "paddle/platform/cuda_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
using platform::PADDLE_CUDA_NUM_THREADS;
|
|
|
|
template <int BlockSize>
|
|
__global__ void AccuracyCudaKernel(const int N, const int D,
|
|
const int64_t* Xdata,
|
|
const int64_t* labeldata, float* accuracy) {
|
|
int count = 0;
|
|
__shared__ int total[BlockSize];
|
|
|
|
// support only 1 block
|
|
for (int i = threadIdx.x; i < (N); i += BlockSize) {
|
|
for (int j = 0; j < D; ++j) {
|
|
if (Xdata[i * D + j] == labeldata[i]) {
|
|
++count;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
total[threadIdx.x] = count;
|
|
__syncthreads();
|
|
|
|
// reduce the count with init value 0, and output accuracy.
|
|
int result = thrust::reduce(thrust::device, total, total + BlockSize, 0);
|
|
if (threadIdx.x == 0) {
|
|
*accuracy = static_cast<float>(result) / static_cast<float>(N);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class AccuracyOpCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
|
|
"It must use GPUPlace.");
|
|
auto* inference = ctx.Input<Tensor>("Out");
|
|
auto* indices = ctx.Input<Tensor>("Indices");
|
|
auto* label = ctx.Input<Tensor>("Label");
|
|
auto* accuracy = ctx.Output<Tensor>("Accuracy");
|
|
// FIXME(typhoonzero): only support indices currently
|
|
// if add support for output values, how to detect the data type?
|
|
const int64_t* indices_data = indices->data<int64_t>();
|
|
const int64_t* label_data = label->data<int64_t>();
|
|
float* accuracy_data = accuracy->mutable_data<float>(ctx.GetPlace());
|
|
|
|
size_t num_samples = inference->dims()[0];
|
|
size_t infer_width = inference->dims()[1];
|
|
cudaMemset((void**)&accuracy_data, 0, sizeof(float));
|
|
|
|
if (num_samples == 0) {
|
|
return;
|
|
}
|
|
|
|
AccuracyCudaKernel<PADDLE_CUDA_NUM_THREADS><<<
|
|
1, PADDLE_CUDA_NUM_THREADS, 0,
|
|
reinterpret_cast<const platform::CUDADeviceContext&>(
|
|
ctx.device_context())
|
|
.stream()>>>(num_samples, infer_width, indices_data, label_data,
|
|
accuracy_data);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
// FIXME(typhoonzero): types of T is for infernece data.
|
|
// label data is always int
|
|
REGISTER_OP_GPU_KERNEL(accuracy, paddle::operators::AccuracyOpCUDAKernel<float>,
|
|
paddle::operators::AccuracyOpCUDAKernel<double>);
|