You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
7.2 KiB
174 lines
7.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/cross_entropy_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class CrossEntropyOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto label_dims = ctx->GetInputDim("Label");
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "Input(X)'s rank should be 2.");
|
|
PADDLE_ENFORCE_EQ(label_dims.size(), 2UL,
|
|
"Input(Label)'s rank should be 2.");
|
|
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
|
|
"The 1st dimension of Input(X) and Input(Label) should "
|
|
"be equal.");
|
|
if (ctx->Attrs().Get<bool>("soft_label")) {
|
|
PADDLE_ENFORCE_EQ(x_dims[1], label_dims[1],
|
|
"If Attr(soft_label) == true, the 2nd dimension of "
|
|
"Input(X) and Input(Label) should be equal.");
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(label_dims[1], 1UL,
|
|
"If Attr(softLabel) == false, the 2nd dimension of "
|
|
"Input(Label) should be 1.");
|
|
}
|
|
|
|
ctx->SetOutputDim("Y", {x_dims[0], 1});
|
|
ctx->ShareLoD("X", /*->*/ "Y");
|
|
}
|
|
|
|
protected:
|
|
// Explicitly set that the data type of computation kernel of cross_entropy
|
|
// is determined by its input "X".
|
|
framework::DataType IndicateDataType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::ToDataType(ctx.Input<Tensor>("X")->type());
|
|
}
|
|
};
|
|
|
|
class CrossEntropyGradientOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
|
|
"Input(Y@GRAD) shoudl be not null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
|
|
"Output(X@GRAD) should be not null.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto label_dims = ctx->GetInputDim("Label");
|
|
auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
|
|
PADDLE_ENFORCE_EQ(dy_dims.size(), 2, "Input(Y@Grad)'s rank should be 2.");
|
|
PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2.");
|
|
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
|
|
"The 1st dimension of Input(X) and Input(Label) should "
|
|
"be equal.");
|
|
PADDLE_ENFORCE_EQ(x_dims[0], dy_dims[0],
|
|
"The 1st dimension of Input(X) and Input(Y@Grad) should "
|
|
"be equal.");
|
|
PADDLE_ENFORCE_EQ(dy_dims[1], 1,
|
|
"The 2nd dimension of Input(Y@Grad) should be 1.");
|
|
if (ctx->Attrs().Get<bool>("soft_label")) {
|
|
PADDLE_ENFORCE_EQ(x_dims[1], label_dims[1],
|
|
"When Attr(soft_label) == true, the 2nd dimension of "
|
|
"Input(X) and Input(Label) should be equal.");
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(label_dims[1], 1,
|
|
"When Attr(soft_label) == false, the 2nd dimension of "
|
|
"Input(Label) should be 1.");
|
|
}
|
|
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
|
|
}
|
|
|
|
protected:
|
|
// Explicitly set that the data type of computation kernel of cross_entropy
|
|
// is determined by its input "X".
|
|
framework::DataType IndicateDataType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::ToDataType(ctx.Input<Tensor>("X")->type());
|
|
}
|
|
};
|
|
|
|
class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
CrossEntropyOpMaker(framework::OpProto* proto,
|
|
framework::OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X",
|
|
"(Tensor, default Tensor<float>), a 2-D tensor with shape N x D, "
|
|
"where N is the batch size and D is the number of classes. "
|
|
"This input is a probability computed by the previous operator, "
|
|
"which is almost always the result of a softmax operator.");
|
|
AddInput(
|
|
"Label",
|
|
"(Tensor, default Tensor<int>), the ground truth which is "
|
|
"a 2-D tensor. "
|
|
"When soft_label is set to false, Label is a Tensor<int> with shape "
|
|
"[N x 1]. "
|
|
"When soft_label is set to true, Label is a Tensor<float/double> "
|
|
"with shape [N x K].");
|
|
AddOutput("Y",
|
|
"(Tensor, default Tensor<float>), a 2-D tensor "
|
|
"with shape [N x 1]. The cross entropy loss.");
|
|
AddAttr<bool>(
|
|
"soft_label",
|
|
"(bool, default false), a flag to indicate whether to interpretate "
|
|
"the given labels as soft labels.")
|
|
.SetDefault(false);
|
|
AddComment(R"DOC(
|
|
CrossEntropy Operator.
|
|
|
|
It supports both standard cross-entropy and soft-label cross-entropy loss
|
|
computation.
|
|
1) One-hot cross-entropy:
|
|
soft_label = false, Label[i, 0] indicates the class index for sample i:
|
|
|
|
$Y[i] = -\log(X[i, Label[i]])$
|
|
|
|
2) Soft-label cross-entropy:
|
|
soft_label = true, Label[i, j] indicates the soft label of class j
|
|
for sample i:
|
|
|
|
$Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}$
|
|
|
|
Please make sure that in this case the summuation of each row of Label
|
|
equals one.
|
|
|
|
3) One-hot cross-entropy with vecterized Input(Label):
|
|
As a special case of 2), when each row of Input(Label) has only one
|
|
non-zero element (equals 1), soft-label cross-entropy degenerates to a
|
|
one-hot cross-entropy with one-hot label representation.
|
|
|
|
Both the input X and Label can carry the LoD (Level of Details) information,
|
|
or not. But the output only shares the LoD information with input X.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(cross_entropy, ops::CrossEntropyOp, ops::CrossEntropyOpMaker,
|
|
cross_entropy_grad, ops::CrossEntropyGradientOp);
|
|
REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<float>,
|
|
ops::CrossEntropyOpKernel<double>);
|
|
REGISTER_OP_CPU_KERNEL(cross_entropy_grad,
|
|
ops::CrossEntropyGradientOpKernel<float>,
|
|
ops::CrossEntropyGradientOpKernel<double>);
|