You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
120 lines
3.8 KiB
120 lines
3.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/framework/eigen.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
#include "paddle/platform/hostdevice.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
|
|
|
template <typename T>
|
|
struct HuberLossForward {
|
|
HOSTDEVICE HuberLossForward(const T& delta) : delta(delta) {}
|
|
|
|
HOSTDEVICE T operator()(const T& val) const {
|
|
T abs_val = std::abs(val);
|
|
if (abs_val <= delta) {
|
|
return static_cast<T>(0.5) * val * val;
|
|
} else {
|
|
return delta * (abs_val - static_cast<T>(0.5) * delta);
|
|
}
|
|
}
|
|
|
|
T delta;
|
|
};
|
|
|
|
template <typename Place, typename T, typename AttrType = T>
|
|
class HuberLossKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* in0 = context.Input<Tensor>("X");
|
|
auto* in1 = context.Input<Tensor>("Y");
|
|
auto* out0 = context.Output<Tensor>("Residual");
|
|
auto* out1 = context.Output<Tensor>("Out");
|
|
auto delta = static_cast<T>(context.Attr<AttrType>("delta"));
|
|
auto place = context.GetEigenDevice<Place>();
|
|
|
|
auto x = EigenVector<T>::Flatten(*in0);
|
|
auto y = EigenVector<T>::Flatten(*in1);
|
|
out0->mutable_data<T>(context.GetPlace());
|
|
auto residual = EigenVector<T>::Flatten(*out0);
|
|
residual.device(place) = y - x;
|
|
out1->mutable_data<T>(context.GetPlace());
|
|
auto loss = EigenVector<T>::Flatten(*out1);
|
|
loss.device(place) = residual.unaryExpr(HuberLossForward<T>(delta));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct HuberLossBackward {
|
|
HOSTDEVICE HuberLossBackward(const T& delta, T sign)
|
|
: sign(sign), delta(delta) {}
|
|
|
|
HOSTDEVICE T operator()(const T& val) const {
|
|
T abs_val = std::abs(val);
|
|
if (abs_val <= delta) {
|
|
return sign * val;
|
|
} else {
|
|
if (val > 0) {
|
|
return sign * delta;
|
|
} else {
|
|
return -1 * sign * delta;
|
|
}
|
|
}
|
|
}
|
|
|
|
T sign;
|
|
T delta;
|
|
};
|
|
|
|
template <typename Place, typename T, typename AttrType = T>
|
|
class HuberLossGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* in0 = context.Input<Tensor>("Residual");
|
|
auto* in1 = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* out1 = context.Output<Tensor>(framework::GradVarName("Y"));
|
|
auto delta = static_cast<T>(context.op().Attr<AttrType>("delta"));
|
|
auto place = context.GetEigenDevice<Place>();
|
|
|
|
auto residual = EigenVector<T>::Flatten(*in0);
|
|
auto out_grad = EigenVector<T>::Flatten(*in1);
|
|
|
|
if (out0) {
|
|
out0->mutable_data<T>(context.GetPlace());
|
|
auto x_grad = EigenVector<T>::Flatten(*out0);
|
|
x_grad.device(place) =
|
|
out_grad * residual.unaryExpr(HuberLossBackward<T>(delta, -1.0));
|
|
}
|
|
|
|
if (out1) {
|
|
out1->mutable_data<T>(context.GetPlace());
|
|
auto y_grad = EigenVector<T>::Flatten(*out1);
|
|
y_grad.device(place) =
|
|
out_grad * residual.unaryExpr(HuberLossBackward<T>(delta, 1.0));
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|