You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
150 lines
5.5 KiB
150 lines
5.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/mul_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class MulOpShapeInference : public framework::InferShapeBase {
|
|
public:
|
|
void operator()(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MulOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of MulOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of MulOp should not be null.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto y_dims = ctx->GetInputDim("Y");
|
|
|
|
int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
|
|
int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
|
|
|
|
VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
|
|
<< " x_num_col_dims=" << x_num_col_dims
|
|
<< " y_num_col_dims=" << y_num_col_dims;
|
|
|
|
PADDLE_ENFORCE_GT(
|
|
x_dims.size(), x_num_col_dims,
|
|
"The input tensor X's rank of MulOp should be larger than "
|
|
"x_num_col_dims.");
|
|
PADDLE_ENFORCE_GT(
|
|
y_dims.size(), y_num_col_dims,
|
|
"The input tensor Y's rank of MulOp should be larger than "
|
|
"y_num_col_dims.");
|
|
|
|
auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
|
|
auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
x_mat_dims[1], y_mat_dims[0],
|
|
"First matrix's width must be equal with second matrix's height.");
|
|
std::vector<int64_t> output_dims;
|
|
output_dims.reserve(
|
|
static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));
|
|
|
|
for (int i = 0; i < x_num_col_dims; ++i) {
|
|
output_dims.push_back(x_dims[i]);
|
|
}
|
|
|
|
for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
|
|
output_dims.push_back(y_dims[i]);
|
|
}
|
|
|
|
ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
};
|
|
|
|
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
MulOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "The first input of mul op");
|
|
AddInput("Y", "The second input of mul op");
|
|
AddOutput("Out", "The output of mul op");
|
|
AddAttr<int>(
|
|
"x_num_col_dims",
|
|
R"DOC(mul_op can take tensors with more than two dimensions as input `X`,
|
|
in that case, tensors will be reshaped to a matrix. The matrix's first
|
|
dimension(column length) will be the product of tensor's last
|
|
`num_col_dims` dimensions, and the matrix's second dimension(row length)
|
|
will be the product of tensor's first `rank - num_col_dims` dimensions.
|
|
)DOC")
|
|
.SetDefault(1)
|
|
.EqualGreaterThan(1);
|
|
AddAttr<int>(
|
|
"y_num_col_dims",
|
|
R"DOC(mul_op can take tensors with more than two dimensions as input `Y`,
|
|
in that case, tensors will be reshaped to a matrix. Just like input `X`.
|
|
)DOC")
|
|
.SetDefault(1)
|
|
.EqualGreaterThan(1);
|
|
AddComment(R"DOC(
|
|
Mul operator is used to perform matrix multiplication for input X and Y.
|
|
|
|
The equation is:
|
|
|
|
Out = X * Y
|
|
|
|
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
|
|
or not. But the output only shares the LoD with input `X`.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class MulOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
|
|
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) should not be null");
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto y_dims = ctx->GetInputDim("Y");
|
|
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
|
|
|
auto x_mat_dims = framework::flatten_to_2d(
|
|
x_dims, ctx->Attrs().Get<int>("x_num_col_dims"));
|
|
auto y_mat_dims = framework::flatten_to_2d(
|
|
y_dims, ctx->Attrs().Get<int>("y_num_col_dims"));
|
|
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
auto y_grad_name = framework::GradVarName("Y");
|
|
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, x_dims);
|
|
}
|
|
if (ctx->HasOutput(y_grad_name)) {
|
|
ctx->SetOutputDim(y_grad_name, y_dims);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(mul, paddle::framework::OperatorWithKernel, ops::MulOpMaker,
|
|
ops::MulOpShapeInference,
|
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
|
REGISTER_OPERATOR(mul_grad, ops::MulOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(mul_grad,
|
|
ops::MulGradKernel<paddle::platform::CPUPlace, float>);
|