You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
190 lines
6.6 KiB
190 lines
6.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <stdint.h>
|
|
#include <sys/stat.h>
|
|
#include <fstream>
|
|
#include <numeric>
|
|
|
|
#include "paddle/framework/data_type.h"
|
|
#include "paddle/framework/framework.pb.h"
|
|
#include "paddle/framework/lod_tensor.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
// TODO(yuyang18): If the functions below are needed by other files, move them
|
|
// to paddle::filesystem namespace.
|
|
constexpr char kSEP = '/';
|
|
static bool FileExists(const std::string &filepath) {
|
|
struct stat buffer;
|
|
return (stat(filepath.c_str(), &buffer) == 0);
|
|
}
|
|
|
|
static std::string DirName(const std::string &filepath) {
|
|
auto pos = filepath.rfind(kSEP);
|
|
if (pos == std::string::npos) {
|
|
return "";
|
|
}
|
|
return filepath.substr(0, pos);
|
|
}
|
|
|
|
static void MkDir(const char *path) {
|
|
if (mkdir(path, 0755)) {
|
|
PADDLE_ENFORCE_EQ(errno, EEXIST, "%s mkdir failed!", path);
|
|
}
|
|
}
|
|
|
|
static void MkDirRecursively(const char *fullpath) {
|
|
if (*fullpath == '\0') return; // empty string
|
|
if (FileExists(fullpath)) return;
|
|
|
|
MkDirRecursively(DirName(fullpath).c_str());
|
|
MkDir(fullpath);
|
|
}
|
|
|
|
class SaveOp : public framework::OperatorBase {
|
|
public:
|
|
SaveOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorBase(type, inputs, outputs, attrs) {}
|
|
void Run(const framework::Scope &scope,
|
|
const platform::DeviceContext &dev_ctx) const override {
|
|
auto filename = Attr<std::string>("file_path");
|
|
auto overwrite = Attr<bool>("overwrite");
|
|
|
|
if (FileExists(filename) && !overwrite) {
|
|
PADDLE_THROW("%s is existed, cannot save to it when overwrite=false",
|
|
filename, overwrite);
|
|
}
|
|
|
|
MkDirRecursively(DirName(filename).c_str());
|
|
|
|
// FIXME(yuyang18): We save variable to local file now, but we should change
|
|
// it to save an output stream.
|
|
std::ofstream fout(filename);
|
|
PADDLE_ENFORCE(static_cast<bool>(fout), "Cannot open %s to write",
|
|
filename);
|
|
|
|
auto iname = Input("X");
|
|
auto *var = scope.FindVar(iname);
|
|
PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s for save_op",
|
|
iname);
|
|
|
|
PADDLE_ENFORCE(var->IsType<framework::LoDTensor>(),
|
|
"SaveOp only support LoDTensor, %s has wrong type", iname);
|
|
|
|
auto &tensor = var->Get<framework::LoDTensor>();
|
|
|
|
{ // the 1st field, uint32_t version
|
|
constexpr uint32_t version = 0;
|
|
fout.write(reinterpret_cast<const char *>(&version), sizeof(version));
|
|
}
|
|
{ // the 2nd field, tensor description
|
|
// int32_t size
|
|
// void* protobuf message
|
|
framework::TensorDesc desc;
|
|
desc.set_data_type(framework::ToDataType(tensor.type()));
|
|
auto dims = framework::vectorize(tensor.dims());
|
|
auto *pb_dims = desc.mutable_dims();
|
|
pb_dims->Resize(static_cast<int>(dims.size()), 0);
|
|
std::copy(dims.begin(), dims.end(), pb_dims->begin());
|
|
int32_t size = desc.ByteSize();
|
|
fout.write(reinterpret_cast<const char *>(&size), sizeof(size));
|
|
auto out = desc.SerializeAsString();
|
|
fout.write(out.data(), size);
|
|
}
|
|
{ // the 3rd field, tensor data
|
|
uint64_t size = tensor.memory_size();
|
|
auto *data_ptr = tensor.data<void>();
|
|
PADDLE_ENFORCE(size < std::numeric_limits<std::streamsize>::max(),
|
|
"Index overflow when writing tensor");
|
|
if (platform::is_gpu_place(tensor.place())) {
|
|
#ifdef PADDLE_WITH_CUDA
|
|
constexpr size_t kBufSize = 1024 * 1024 * 64; // 64MB
|
|
std::unique_ptr<char[]> buf(new char[kBufSize]);
|
|
auto &gpu_dev_ctx =
|
|
static_cast<const platform::CUDADeviceContext &>(dev_ctx);
|
|
platform::CPUPlace cpu;
|
|
uintptr_t data = reinterpret_cast<uintptr_t>(data_ptr);
|
|
while (size != 0) {
|
|
size_t size_to_write = std::min(kBufSize, static_cast<size_t>(size));
|
|
memory::Copy(cpu, buf.get(),
|
|
boost::get<platform::GPUPlace>(tensor.place()),
|
|
reinterpret_cast<const void *>(data), size_to_write,
|
|
gpu_dev_ctx.stream());
|
|
gpu_dev_ctx.Wait();
|
|
fout.write(buf.get(), size_to_write);
|
|
data += size_to_write;
|
|
size -= size_to_write;
|
|
}
|
|
#else
|
|
PADDLE_THROW("Unexpected branch");
|
|
#endif
|
|
} else {
|
|
fout.write(static_cast<const char *>(data_ptr),
|
|
static_cast<std::streamsize>(size));
|
|
}
|
|
}
|
|
{ // the 4th field, lod information
|
|
// uint64_t lod_level
|
|
// uint64_t lod_level_1 size in byte.
|
|
// int* lod_level_1 data
|
|
// ...
|
|
auto lod = tensor.lod();
|
|
uint64_t size = lod.size();
|
|
fout.write(reinterpret_cast<const char *>(&size), sizeof(size));
|
|
|
|
for (auto &each : lod) {
|
|
size = each.size() * sizeof(framework::LoD::value_type::value_type);
|
|
fout.write(reinterpret_cast<const char *>(&size), sizeof(size));
|
|
fout.write(reinterpret_cast<const char *>(each.data()),
|
|
static_cast<std::streamsize>(size));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
class SaveOpProtoMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
SaveOpProtoMaker(framework::OpProto *proto,
|
|
framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "(Tensor ) Input tensor to be saved");
|
|
AddComment(R"DOC(
|
|
Save operator
|
|
|
|
This operator will serialize and write a tensor variable to file on disk.
|
|
)DOC");
|
|
AddAttr<bool>("overwrite",
|
|
"(boolean, default true)"
|
|
"Overwrite the output file if exist")
|
|
.SetDefault(true);
|
|
AddAttr<std::string>("file_path",
|
|
"(string)"
|
|
"The \"file_path\" where the variable will be saved.")
|
|
.AddCustomChecker(
|
|
[](const std::string &path) { return !path.empty(); });
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(save, ops::SaveOp, ops::SaveOpProtoMaker);
|