You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/sequence_erase_op.cu

119 lines
4.5 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include "paddle/fluid/operators/sequence_erase_op.h"
#include "paddle/fluid/platform/cuda_helper.h"
namespace paddle {
namespace operators {
using platform::PADDLE_CUDA_NUM_THREADS;
using LoDTensor = framework::LoDTensor;
template <typename T>
__global__ void LabelErasedIdx(const T* in_dat, const int64_t in_len,
const int* tokens, const size_t tokens_len,
size_t* num_erased) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index < in_len) {
for (size_t i = 0; i < tokens_len; ++i) {
if (in_dat[index] == tokens[i]) {
num_erased[index + 1] = 1;
break;
}
}
}
}
__global__ void GetOutLod(const size_t* num_erased, const size_t* in_lod,
const size_t lod_len, size_t* out_lod0) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index < lod_len) {
out_lod0[index] = in_lod[index] - num_erased[in_lod[index]];
}
}
template <typename T>
__global__ void SetOutput(const T* in_dat, const int64_t in_len,
const size_t* num_erased, T* out_dat) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index < in_len) {
if (num_erased[index] == num_erased[index + 1]) {
out_dat[index - num_erased[index]] = in_dat[index];
}
}
}
template <typename T>
class SequenceEraseOpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<LoDTensor>("X");
auto* out = ctx.Output<LoDTensor>("Out");
auto lod = in->lod();
PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
PADDLE_ENFORCE_EQ(lod[0].back(), (size_t)in->numel(),
"The actual size mismatches with the LoD information.");
auto tokens = ctx.Attr<std::vector<int>>("tokens");
auto in_len = in->numel();
auto in_dat = in->data<T>();
// Copy tokens to GPU
thrust::device_vector<int> dev_tokens(tokens.begin(), tokens.end());
int* dev_tokens_ptr = thrust::raw_pointer_cast(dev_tokens.data());
// Count number of elements to be erased
thrust::device_vector<size_t> num_erased(in_len + 1, 0);
size_t* num_erased_ptr = thrust::raw_pointer_cast(num_erased.data());
auto stream = ctx.cuda_device_context().stream();
LabelErasedIdx<<<(in_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
in_dat, in_len, dev_tokens_ptr, tokens.size(), num_erased_ptr);
thrust::inclusive_scan(num_erased.begin() + 1, num_erased.end(),
num_erased.begin() + 1);
// Copy LoD to GPU
auto lod0 = lod[0];
auto lod_len = lod0.size();
const size_t* dev_in_lod_ptr = lod0.CUDAData(ctx.GetPlace());
// Calc output LoD
thrust::device_vector<size_t> dev_out_lod(lod_len);
size_t* dev_out_lod_ptr = thrust::raw_pointer_cast(dev_out_lod.data());
GetOutLod<<<(lod_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
num_erased_ptr, dev_in_lod_ptr, lod_len, dev_out_lod_ptr);
// Set LoD for output
std::vector<size_t> out_lod0(dev_out_lod.begin(), dev_out_lod.end());
framework::LoD out_lod;
out_lod.push_back(out_lod0);
out->set_lod(out_lod);
// Set output
out->Resize({static_cast<int64_t>(out_lod0.back()), 1});
auto out_dat = out->mutable_data<T>(ctx.GetPlace());
SetOutput<<<(in_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(in_dat, in_len,
num_erased_ptr, out_dat);
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_CUDA_KERNEL(sequence_erase,
paddle::operators::SequenceEraseOpCUDAKernel<int32_t>,
paddle::operators::SequenceEraseOpCUDAKernel<int64_t>);