You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
105 lines
3.2 KiB
105 lines
3.2 KiB
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
def repeat(list, starts, times, is_first):
|
|
newlist = [list[0]]
|
|
if is_first:
|
|
for i, time in enumerate(times):
|
|
size = list[i + 1] - list[i]
|
|
newlist.append(newlist[-1] + size * time)
|
|
else:
|
|
for i, time in enumerate(times):
|
|
start = list.index(starts[i])
|
|
end = list.index(starts[i + 1]) + 1
|
|
for t in range(time):
|
|
for index in range(start, end - 1):
|
|
newlist.append(newlist[-1] + list[index + 1] - list[index])
|
|
return newlist
|
|
|
|
|
|
def repeat_array(array, starts, times):
|
|
newlist = []
|
|
for i, time in enumerate(times):
|
|
for t in range(time):
|
|
newlist.extend(array[starts[i]:starts[i + 1]])
|
|
return newlist
|
|
|
|
|
|
class TestSeqExpand(OpTest):
|
|
def set_data(self):
|
|
x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32')
|
|
self.inputs = {'X': x_data}
|
|
self.repeat = 2
|
|
|
|
def compute(self):
|
|
x = self.inputs['X']
|
|
x_data, x_lod = x if type(x) == tuple else (x, None)
|
|
if not x_lod:
|
|
x_lod = [[i for i in range(1 + x_data.shape[0])]]
|
|
else:
|
|
x_lod = [x_lod[0]] + x_lod
|
|
if self.repeat:
|
|
self.attrs = {'repeat': self.repeat}
|
|
repeats = (len(x_lod[0]) - 1) * [self.repeat]
|
|
else:
|
|
y_data, y_lod = self.inputs['Y']
|
|
repeats = [((y_lod[0][i + 1] - y_lod[0][i]) /
|
|
(x_lod[0][i + 1] - x_lod[0][i]))
|
|
for i in range(len(y_lod[0]) - 1)]
|
|
out_lod = [repeat(x_lod[0], x_lod[0], repeats, True)] + [
|
|
repeat(lod, x_lod[0], repeats, False) for lod in x_lod[1:]
|
|
]
|
|
out = repeat_array(x_data.tolist(), x_lod[0], repeats)
|
|
self.outputs = {'Out': out}
|
|
|
|
def setUp(self):
|
|
self.op_type = 'seq_expand'
|
|
self.set_data()
|
|
self.compute()
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(["X"], "Out")
|
|
|
|
|
|
class TestSeqExpandCase1(TestSeqExpand):
|
|
def set_data(self):
|
|
x_data = np.random.uniform(0.1, 1, [7, 1]).astype('float32')
|
|
x_lod = [[0, 5, 7], [0, 2, 5, 7]]
|
|
self.inputs = {'X': (x_data, x_lod)}
|
|
self.repeat = 2
|
|
|
|
|
|
class TestSeqExpandCase2(TestSeqExpand):
|
|
def set_data(self):
|
|
x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32')
|
|
self.inputs = {'X': x_data}
|
|
self.repeat = 2
|
|
|
|
|
|
class TestSeqExpandCase3(TestSeqExpand):
|
|
def set_data(self):
|
|
x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32')
|
|
y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32')
|
|
y_lod = [[0, 1, 4, 8]]
|
|
self.inputs = {'X': x_data, 'Y': (y_data, y_lod)}
|
|
self.repeat = None
|
|
|
|
|
|
class TestSeqExpandCase4(TestSeqExpand):
|
|
def set_data(self):
|
|
x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32')
|
|
x_lod = [[0, 2, 5]]
|
|
y_data = np.random.uniform(0.1, 1, [13, 1]).astype('float32')
|
|
y_lod = [[0, 4, 13], [0, 2, 4, 7, 10, 13]]
|
|
self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
|
|
self.repeat = None
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|