You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
298 lines
9.5 KiB
298 lines
9.5 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/inference/analysis/data_flow_graph.h"
|
|
#include "paddle/fluid/inference/analysis/dot.h"
|
|
#include "paddle/fluid/inference/analysis/node.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace analysis {
|
|
|
|
// It is a better idea that the inputs and outputs of this graph is set manually
|
|
// before, but there must be a Pass that helps to prune the unnecessary ops that
|
|
// do not contribute to the given targets, so in this pass, analysis and get the
|
|
// inputs and outputs is OK.
|
|
void DataFlowGraph::Build() {
|
|
inputs.clear();
|
|
outputs.clear();
|
|
std::unordered_set<Node *> ins;
|
|
std::unordered_set<Node *> outs;
|
|
for (auto &node : nodes.nodes()) {
|
|
for (auto *in : node->inlinks) {
|
|
ins.insert(in);
|
|
}
|
|
for (auto *out : node->outlinks) {
|
|
outs.insert(out);
|
|
}
|
|
}
|
|
|
|
// The nodes that in ins but not in outs is the graph's inputs
|
|
// similarly, the nodes that in outs but not in ins is the graphs' outputs
|
|
for (auto *in : ins) {
|
|
if (!outs.count(in)) {
|
|
inputs.push_back(in);
|
|
}
|
|
}
|
|
for (auto *out : outs) {
|
|
if (!outs.count(out)) {
|
|
outputs.push_back(out);
|
|
}
|
|
}
|
|
|
|
Clean();
|
|
}
|
|
|
|
void DataFlowGraph::Clean() {
|
|
for (auto &node : nodes.nodes()) {
|
|
std::unordered_set<Node *> inlinks_set(node->inlinks.begin(),
|
|
node->inlinks.end());
|
|
std::unordered_set<Node *> outlinks_set(node->outlinks.begin(),
|
|
node->outlinks.end());
|
|
if (inlinks_set.size() < node->inlinks.size()) {
|
|
LOG(INFO) << "Clean: node " << node->repr() << " prune duplicate inputs";
|
|
node->inlinks.assign(inlinks_set.begin(), inlinks_set.end());
|
|
}
|
|
if (outlinks_set.size() < node->outlinks.size()) {
|
|
LOG(INFO) << "Clean: node " << node->repr() << " prune duplicate inputs";
|
|
node->outlinks.assign(outlinks_set.begin(), outlinks_set.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
std::string DataFlowGraph::DotString() const {
|
|
Dot dot;
|
|
|
|
// Add nodes
|
|
for (size_t i = 0; i < nodes.size(); i++) {
|
|
const Node &node = nodes.Get(i);
|
|
dot.AddNode(node.repr(), node.dot_attrs());
|
|
}
|
|
|
|
// Add edges
|
|
for (size_t i = 0; i < nodes.size(); i++) {
|
|
const Node &node = nodes.Get(i);
|
|
for (auto &in : node.inlinks) {
|
|
dot.AddEdge(in->repr(), node.repr(), {});
|
|
}
|
|
}
|
|
return dot.Build();
|
|
}
|
|
|
|
std::string DataFlowGraph::HumanReadableInfo(bool show_values,
|
|
bool show_functions) const {
|
|
std::stringstream values, functions;
|
|
for (auto &n : nodes.nodes()) {
|
|
if (show_values && n->IsValue()) {
|
|
values << n->repr() << "\n";
|
|
}
|
|
if (show_functions && n->IsFunction()) {
|
|
functions << n->repr() << "\n";
|
|
}
|
|
}
|
|
return "Values:\n" + values.str() + "\n\n" + "Functions:\n" + functions.str();
|
|
}
|
|
|
|
//
|
|
// NodesBFSIterator
|
|
//
|
|
|
|
GraphTraits<DataFlowGraph>::NodesBFSIterator::NodesBFSIterator(
|
|
const std::vector<Node *> &source)
|
|
: queue_(source.begin(), source.end()) {}
|
|
|
|
// GraphTraits<DataFlowGraph>::NodesBFSIterator::NodesBFSIterator(
|
|
// GraphTraits<DataFlowGraph>::NodesBFSIterator &&other) noexcept
|
|
// : queue_(std::move(other.queue_)),
|
|
// visited_(std::move(other.visited_)) {}
|
|
|
|
GraphTraits<DataFlowGraph>::NodesBFSIterator::NodesBFSIterator(
|
|
const GraphTraits<DataFlowGraph>::NodesBFSIterator &other)
|
|
: queue_(other.queue_), visited_(other.visited_) {}
|
|
|
|
Node &GraphTraits<DataFlowGraph>::NodesBFSIterator::operator*() {
|
|
PADDLE_ENFORCE(!queue_.empty());
|
|
return *queue_.front();
|
|
}
|
|
|
|
Node *GraphTraits<DataFlowGraph>::NodesBFSIterator::operator->() {
|
|
PADDLE_ENFORCE(!queue_.empty());
|
|
return queue_.front();
|
|
}
|
|
|
|
GraphTraits<DataFlowGraph>::NodesBFSIterator &
|
|
GraphTraits<DataFlowGraph>::NodesBFSIterator::operator=(
|
|
const GraphTraits<DataFlowGraph>::NodesBFSIterator &other) {
|
|
queue_ = other.queue_;
|
|
visited_ = other.visited_;
|
|
return *this;
|
|
}
|
|
|
|
GraphTraits<DataFlowGraph>::NodesBFSIterator
|
|
&GraphTraits<DataFlowGraph>::NodesBFSIterator::operator++() {
|
|
PADDLE_ENFORCE(!queue_.empty());
|
|
auto *cur = queue_.front();
|
|
visited_.insert(cur);
|
|
queue_.pop_front();
|
|
for (auto *output : cur->outlinks) {
|
|
if (!visited_.count(output)) {
|
|
queue_.push_back(output);
|
|
visited_.insert(output);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
bool GraphTraits<DataFlowGraph>::NodesBFSIterator::operator==(
|
|
const GraphTraits<DataFlowGraph>::NodesBFSIterator &other) {
|
|
if (queue_.empty()) return other.queue_.empty();
|
|
if ((!queue_.empty()) && (!other.queue_.empty())) {
|
|
return queue_.front() == other.queue_.front() &&
|
|
visited_.size() == other.visited_.size(); // here need to check the
|
|
// equality of queue and
|
|
// visited. Just a light but week implementation.
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// NodesDFSIterator
|
|
//
|
|
GraphTraits<DataFlowGraph>::NodesDFSIterator::NodesDFSIterator(
|
|
const std::vector<Node *> &source) {
|
|
for (auto *x : source) stack_.push(x);
|
|
}
|
|
|
|
// GraphTraits<DataFlowGraph>::NodesDFSIterator::NodesDFSIterator(
|
|
// GraphTraits<DataFlowGraph>::NodesDFSIterator &&other) noexcept
|
|
// : stack_(std::move(other.stack_)),
|
|
// visited_(std::move(other.visited_)) {}
|
|
|
|
GraphTraits<DataFlowGraph>::NodesDFSIterator::NodesDFSIterator(
|
|
const GraphTraits<DataFlowGraph>::NodesDFSIterator &other)
|
|
: stack_(other.stack_), visited_(other.visited_) {}
|
|
|
|
Node &GraphTraits<DataFlowGraph>::NodesDFSIterator::operator*() {
|
|
PADDLE_ENFORCE(!stack_.empty());
|
|
return *stack_.top();
|
|
}
|
|
|
|
GraphTraits<DataFlowGraph>::NodesDFSIterator
|
|
&GraphTraits<DataFlowGraph>::NodesDFSIterator::operator++() {
|
|
if (stack_.empty()) return *this;
|
|
visited_.insert(stack_.top());
|
|
auto *cur = stack_.top();
|
|
stack_.pop();
|
|
for (auto *x : cur->outlinks) {
|
|
if (!visited_.count(x)) {
|
|
stack_.push(x);
|
|
visited_.insert(x);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
bool GraphTraits<DataFlowGraph>::NodesDFSIterator::operator==(
|
|
const GraphTraits<DataFlowGraph>::NodesDFSIterator &other) {
|
|
if (stack_.empty()) return other.stack_.empty();
|
|
if ((!stack_.empty()) && (!other.stack_.empty())) {
|
|
return stack_.top() == other.stack_.top();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
GraphTraits<DataFlowGraph>::NodesDFSIterator &
|
|
GraphTraits<DataFlowGraph>::NodesDFSIterator::operator=(
|
|
const GraphTraits<DataFlowGraph>::NodesDFSIterator &other) {
|
|
stack_ = other.stack_;
|
|
visited_ = other.visited_;
|
|
return *this;
|
|
}
|
|
Node *GraphTraits<DataFlowGraph>::NodesDFSIterator::operator->() {
|
|
return stack_.top();
|
|
}
|
|
|
|
GraphTraits<DataFlowGraph>::NodesTSIterator::NodesTSIterator(
|
|
const std::vector<Node *> &source) {
|
|
PADDLE_ENFORCE(!source.empty(),
|
|
"Start points of topological sorting should not be empty!");
|
|
std::unordered_set<Node *> visited;
|
|
std::unordered_set<Node *> to_visit{source.begin(), source.end()};
|
|
|
|
std::vector<Node *> inlink_visited;
|
|
while (!to_visit.empty()) {
|
|
std::vector<Node *> queue(to_visit.begin(), to_visit.end());
|
|
for (auto *p : queue) {
|
|
inlink_visited.clear();
|
|
|
|
std::copy_if(p->inlinks.begin(), p->inlinks.end(),
|
|
std::back_inserter(inlink_visited),
|
|
[&](Node *x) { return visited.count(x); });
|
|
|
|
if (inlink_visited.size() == p->inlinks.size()) {
|
|
sorted_.push_back(p);
|
|
for (auto *_ : p->outlinks) {
|
|
if (!visited.count(_)) {
|
|
to_visit.insert(_);
|
|
}
|
|
}
|
|
|
|
to_visit.erase(p);
|
|
visited.insert(p);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
GraphTraits<DataFlowGraph>::NodesTSIterator::NodesTSIterator(
|
|
const paddle::inference::analysis::GraphTraits<
|
|
DataFlowGraph>::NodesTSIterator &other)
|
|
: sorted_(other.sorted_), cursor_(other.cursor_) {}
|
|
|
|
Node &GraphTraits<DataFlowGraph>::NodesTSIterator::operator*() {
|
|
PADDLE_ENFORCE_LT(cursor_, sorted_.size());
|
|
return *sorted_[cursor_];
|
|
}
|
|
|
|
paddle::inference::analysis::GraphTraits<DataFlowGraph>::NodesTSIterator
|
|
&GraphTraits<DataFlowGraph>::NodesTSIterator::operator++() {
|
|
if (++cursor_ >= sorted_.size()) {
|
|
sorted_.clear();
|
|
cursor_ = 0;
|
|
}
|
|
return *this;
|
|
}
|
|
paddle::inference::analysis::GraphTraits<DataFlowGraph>::NodesTSIterator &
|
|
GraphTraits<DataFlowGraph>::NodesTSIterator::operator=(
|
|
const paddle::inference::analysis::GraphTraits<
|
|
DataFlowGraph>::NodesTSIterator &other) {
|
|
cursor_ = other.cursor_;
|
|
sorted_ = other.sorted_;
|
|
return *this;
|
|
}
|
|
|
|
bool GraphTraits<DataFlowGraph>::NodesTSIterator::operator==(
|
|
const paddle::inference::analysis::GraphTraits<
|
|
DataFlowGraph>::NodesTSIterator &other) {
|
|
return sorted_ == other.sorted_ && cursor_ == other.cursor_;
|
|
}
|
|
|
|
Node *GraphTraits<DataFlowGraph>::NodesTSIterator::operator->() {
|
|
PADDLE_ENFORCE_LT(cursor_, sorted_.size());
|
|
return sorted_[cursor_];
|
|
}
|
|
|
|
} // namespace analysis
|
|
} // namespace inference
|
|
} // namespace paddle
|