You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
144 lines
5.3 KiB
144 lines
5.3 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
template <typename T>
|
|
class BilinearInterpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* input_t = ctx.Input<Tensor>("X"); // float tensor
|
|
auto* output_t = ctx.Output<Tensor>("Out"); // float tensor
|
|
auto* input = input_t->data<T>();
|
|
auto* output = output_t->mutable_data<T>(ctx.GetPlace());
|
|
|
|
int out_h = ctx.Attr<int>("out_h");
|
|
int out_w = ctx.Attr<int>("out_w");
|
|
int batch_size = input_t->dims()[0];
|
|
int channels = input_t->dims()[1];
|
|
int in_h = input_t->dims()[2];
|
|
int in_w = input_t->dims()[3];
|
|
|
|
int in_hw = in_h * in_w;
|
|
int out_hw = out_h * out_w;
|
|
int in_chw = channels * in_hw;
|
|
int out_chw = channels * out_hw;
|
|
|
|
T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
|
|
T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;
|
|
|
|
if (in_h == out_h && in_w == out_w) {
|
|
memcpy(output, input, input_t->numel() * sizeof(T));
|
|
} else {
|
|
for (int k = 0; k < batch_size; ++k) { // loop for batches
|
|
for (int i = 0; i < out_h; ++i) { // loop for images
|
|
int h = ratio_h * i;
|
|
int hid = (h < in_h - 1) ? 1 : 0;
|
|
T h1lambda = ratio_h * i - h;
|
|
T h2lambda = 1 - h1lambda;
|
|
|
|
for (int j = 0; j < out_w; ++j) {
|
|
int w = ratio_w * j;
|
|
int wid = (w < in_w - 1) ? 1 : 0;
|
|
T w1lambda = ratio_w * j - w;
|
|
T w2lambda = 1 - w1lambda;
|
|
// calculate four position for bilinear interpolation
|
|
const T* in_pos = &input[k * in_chw + h * in_w + w];
|
|
T* out_pos = &output[k * out_chw + i * out_w + j];
|
|
|
|
for (int c = 0; c < channels; ++c) { // loop for channels
|
|
// bilinear interpolation
|
|
out_pos[0] =
|
|
h2lambda * (w2lambda * in_pos[0] + w1lambda * in_pos[wid]) +
|
|
h1lambda * (w2lambda * in_pos[hid * in_w] +
|
|
w1lambda * in_pos[hid * in_w + wid]);
|
|
in_pos += in_hw;
|
|
out_pos += out_hw;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class BilinearInterpGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* d_input = d_input_t->mutable_data<T>(ctx.GetPlace());
|
|
auto* d_output = d_output_t->data<T>();
|
|
|
|
auto& device_ctx =
|
|
ctx.template device_context<platform::CPUDeviceContext>();
|
|
math::SetConstant<platform::CPUDeviceContext, T> zero;
|
|
zero(device_ctx, d_input_t, static_cast<T>(0.0));
|
|
|
|
int out_h = ctx.Attr<int>("out_h");
|
|
int out_w = ctx.Attr<int>("out_w");
|
|
int batch_size = d_input_t->dims()[0];
|
|
int channels = d_input_t->dims()[1];
|
|
int in_h = d_input_t->dims()[2];
|
|
int in_w = d_input_t->dims()[3];
|
|
|
|
int in_hw = in_h * in_w;
|
|
int out_hw = out_h * out_w;
|
|
int in_chw = channels * in_hw;
|
|
int out_chw = channels * out_hw;
|
|
|
|
T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
|
|
T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;
|
|
|
|
if (in_h == out_h && in_w == out_w) {
|
|
memcpy(d_input, d_output, d_input_t->numel() * sizeof(T));
|
|
} else {
|
|
for (int k = 0; k < batch_size; ++k) { // loop for batches
|
|
for (int i = 0; i < out_h; ++i) { // loop for images
|
|
int h = ratio_h * i;
|
|
int hid = (h < in_h - 1) ? 1 : 0;
|
|
T h1lambda = ratio_h * i - h;
|
|
T h2lambda = 1 - h1lambda;
|
|
|
|
for (int j = 0; j < out_w; ++j) {
|
|
int w = ratio_w * j;
|
|
int wid = (w < in_w - 1) ? 1 : 0;
|
|
T w1lambda = ratio_w * j - w;
|
|
T w2lambda = 1 - w1lambda;
|
|
T* in_pos = &d_input[k * in_chw + h * in_w + w];
|
|
const T* out_pos = &d_output[k * out_chw + i * out_w + j];
|
|
|
|
for (int c = 0; c < channels; ++c) { // loop for channels
|
|
in_pos[0] += h2lambda * w2lambda * out_pos[0];
|
|
in_pos[wid] += h2lambda * w1lambda * out_pos[0];
|
|
in_pos[hid * in_w] += h1lambda * w2lambda * out_pos[0];
|
|
in_pos[hid * in_w + wid] += h1lambda * w1lambda * out_pos[0];
|
|
in_pos += in_hw;
|
|
out_pos += out_hw;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|