You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
253 lines
8.1 KiB
253 lines
8.1 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import argparse
|
|
import time
|
|
import math
|
|
import random
|
|
import shutil
|
|
import tempfile
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.profiler as profiler
|
|
from paddle.fluid import core
|
|
import unittest
|
|
from multiprocessing import Process
|
|
import os
|
|
import signal
|
|
from functools import reduce
|
|
from test_dist_fleet_base import runtime_main, FleetDistRunnerBase
|
|
|
|
paddle.enable_static()
|
|
|
|
DTYPE = "int64"
|
|
DATA_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/simnet.train.1000'
|
|
DATA_MD5 = '24e49366eb0611c552667989de2f57d5'
|
|
|
|
# For Net
|
|
base_lr = 0.2
|
|
emb_lr = base_lr * 3
|
|
dict_dim = 1500
|
|
emb_dim = 128
|
|
hid_dim = 128
|
|
margin = 0.1
|
|
sample_rate = 1
|
|
|
|
# Fix seed for test
|
|
fluid.default_startup_program().random_seed = 1
|
|
fluid.default_main_program().random_seed = 1
|
|
|
|
|
|
def fake_simnet_reader():
|
|
def reader():
|
|
for _ in range(1000):
|
|
q = np.random.random_integers(0, 1500 - 1, size=1).tolist()
|
|
label = np.random.random_integers(0, 1, size=1).tolist()
|
|
pt = np.random.random_integers(0, 1500 - 1, size=1).tolist()
|
|
nt = np.random.random_integers(0, 1500 - 1, size=1).tolist()
|
|
yield [q, label, pt, nt]
|
|
|
|
return reader
|
|
|
|
|
|
def get_acc(cos_q_nt, cos_q_pt, batch_size):
|
|
cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
|
|
cond = fluid.layers.cast(cond, dtype='float64')
|
|
cond_3 = fluid.layers.reduce_sum(cond)
|
|
acc = fluid.layers.elementwise_div(
|
|
cond_3,
|
|
fluid.layers.fill_constant(
|
|
shape=[1], value=batch_size * 1.0, dtype='float64'),
|
|
name="simnet_acc")
|
|
return acc
|
|
|
|
|
|
def get_loss(cos_q_pt, cos_q_nt):
|
|
loss_op1 = fluid.layers.elementwise_sub(
|
|
fluid.layers.fill_constant_batch_size_like(
|
|
input=cos_q_pt, shape=[-1, 1], value=margin, dtype='float32'),
|
|
cos_q_pt)
|
|
loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
|
|
loss_op3 = fluid.layers.elementwise_max(
|
|
fluid.layers.fill_constant_batch_size_like(
|
|
input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'),
|
|
loss_op2)
|
|
avg_cost = fluid.layers.mean(loss_op3)
|
|
return avg_cost
|
|
|
|
|
|
def train_network(batch_size,
|
|
is_distributed=False,
|
|
is_sparse=False,
|
|
is_self_contained_lr=False,
|
|
is_pyreader=False):
|
|
# query
|
|
q = fluid.layers.data(
|
|
name="query_ids", shape=[1], dtype="int64", lod_level=1)
|
|
# label data
|
|
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
|
# pt
|
|
pt = fluid.layers.data(
|
|
name="pos_title_ids", shape=[1], dtype="int64", lod_level=1)
|
|
# nt
|
|
nt = fluid.layers.data(
|
|
name="neg_title_ids", shape=[1], dtype="int64", lod_level=1)
|
|
|
|
datas = [q, label, pt, nt]
|
|
|
|
reader = None
|
|
if is_pyreader:
|
|
reader = fluid.io.PyReader(
|
|
feed_list=datas,
|
|
capacity=64,
|
|
iterable=False,
|
|
use_double_buffer=False)
|
|
|
|
# embedding
|
|
q_emb = fluid.embedding(
|
|
input=q,
|
|
is_distributed=is_distributed,
|
|
size=[dict_dim, emb_dim],
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(value=0.01), name="__emb__"),
|
|
is_sparse=is_sparse)
|
|
q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim])
|
|
# vsum
|
|
q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum')
|
|
q_ss = fluid.layers.softsign(q_sum)
|
|
# fc layer after conv
|
|
q_fc = fluid.layers.fc(
|
|
input=q_ss,
|
|
size=hid_dim,
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(value=0.01),
|
|
name="__q_fc__",
|
|
learning_rate=base_lr), )
|
|
|
|
# embedding
|
|
pt_emb = fluid.embedding(
|
|
input=pt,
|
|
is_distributed=is_distributed,
|
|
size=[dict_dim, emb_dim],
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(value=0.01),
|
|
name="__emb__",
|
|
learning_rate=emb_lr),
|
|
is_sparse=is_sparse)
|
|
pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim])
|
|
# vsum
|
|
pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum')
|
|
pt_ss = fluid.layers.softsign(pt_sum)
|
|
# fc layer
|
|
pt_fc = fluid.layers.fc(
|
|
input=pt_ss,
|
|
size=hid_dim,
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(value=0.01), name="__fc__"),
|
|
bias_attr=fluid.ParamAttr(name="__fc_b__"))
|
|
|
|
# embedding
|
|
nt_emb = fluid.embedding(
|
|
input=nt,
|
|
is_distributed=is_distributed,
|
|
size=[dict_dim, emb_dim],
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(value=0.01), name="__emb__"),
|
|
is_sparse=is_sparse)
|
|
nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim])
|
|
# vsum
|
|
nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum')
|
|
nt_ss = fluid.layers.softsign(nt_sum)
|
|
# fc layer
|
|
nt_fc = fluid.layers.fc(
|
|
input=nt_ss,
|
|
size=hid_dim,
|
|
param_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(value=0.01), name="__fc__"),
|
|
bias_attr=fluid.ParamAttr(name="__fc_b__"))
|
|
cos_q_pt = fluid.layers.cos_sim(q_fc, pt_fc)
|
|
cos_q_nt = fluid.layers.cos_sim(q_fc, nt_fc)
|
|
# loss
|
|
avg_cost = get_loss(cos_q_pt, cos_q_nt)
|
|
# acc
|
|
acc = get_acc(cos_q_nt, cos_q_pt, batch_size)
|
|
return avg_cost, acc, cos_q_pt, reader
|
|
|
|
|
|
class TestDistSimnetBow2x2(FleetDistRunnerBase):
|
|
"""
|
|
For test SimnetBow model, use Fleet api
|
|
"""
|
|
|
|
def net(self, args, batch_size=4, lr=0.01):
|
|
avg_cost, _, predict, self.reader = \
|
|
train_network(batch_size=batch_size, is_distributed=False,
|
|
is_sparse=True, is_self_contained_lr=False, is_pyreader=(args.reader == "pyreader"))
|
|
self.avg_cost = avg_cost
|
|
self.predict = predict
|
|
|
|
return avg_cost
|
|
|
|
def check_model_right(self, dirname):
|
|
model_filename = os.path.join(dirname, "__model__")
|
|
|
|
with open(model_filename, "rb") as f:
|
|
program_desc_str = f.read()
|
|
|
|
program = fluid.Program.parse_from_string(program_desc_str)
|
|
with open(os.path.join(dirname, "__model__.proto"), "w") as wn:
|
|
wn.write(str(program))
|
|
|
|
def do_pyreader_training(self, fleet):
|
|
"""
|
|
do training using dataset, using fetch handler to catch variable
|
|
Args:
|
|
fleet(Fleet api): the fleet object of Parameter Server, define distribute training role
|
|
"""
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
exe.run(fluid.default_startup_program())
|
|
fleet.init_worker()
|
|
batch_size = 4
|
|
# reader
|
|
train_reader = paddle.batch(fake_simnet_reader(), batch_size=batch_size)
|
|
self.reader.decorate_sample_list_generator(train_reader)
|
|
for epoch_id in range(1):
|
|
self.reader.start()
|
|
try:
|
|
pass_start = time.time()
|
|
while True:
|
|
loss_val = exe.run(program=fluid.default_main_program(),
|
|
fetch_list=[self.avg_cost.name])
|
|
loss_val = np.mean(loss_val)
|
|
message = "TRAIN ---> pass: {} loss: {}\n".format(epoch_id,
|
|
loss_val)
|
|
fleet.util.print_on_rank(message, 0)
|
|
|
|
pass_time = time.time() - pass_start
|
|
except fluid.core.EOFException:
|
|
self.reader.reset()
|
|
fleet.stop_worker()
|
|
|
|
def do_dataset_training(self, fleet):
|
|
pass
|
|
|
|
|
|
if __name__ == "__main__":
|
|
runtime_main(TestDistSimnetBow2x2)
|