124 lines
4.6 KiB
124 lines
4.6 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle.fluid.core as core
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import compiler, Program, program_guard
|
|
import paddle
|
|
import paddle.nn.functional as F
|
|
import paddle.fluid as fluid
|
|
|
|
|
|
def adaptive_start_index(index, input_size, output_size):
|
|
return int(np.floor(index * input_size / output_size))
|
|
|
|
|
|
def adaptive_end_index(index, input_size, output_size):
|
|
return int(np.ceil((index + 1) * input_size / output_size))
|
|
|
|
|
|
def avg_pool1D_forward_naive(x,
|
|
ksize,
|
|
strides,
|
|
paddings,
|
|
global_pool=0,
|
|
ceil_mode=False,
|
|
exclusive=False,
|
|
adaptive=False,
|
|
data_type=np.float64):
|
|
N, C, L = x.shape
|
|
if global_pool == 1:
|
|
ksize = [L]
|
|
if adaptive:
|
|
L_out = ksize[0]
|
|
else:
|
|
L_out = (L - ksize[0] + 2 * paddings[0] + strides[0] - 1
|
|
) // strides[0] + 1 if ceil_mode else (
|
|
L - ksize[0] + 2 * paddings[0]) // strides[0] + 1
|
|
|
|
out = np.zeros((N, C, L_out))
|
|
for i in range(L_out):
|
|
if adaptive:
|
|
r_start = adaptive_start_index(i, L, ksize[0])
|
|
r_end = adaptive_end_index(i, L, ksize[0])
|
|
else:
|
|
r_start = np.max((i * strides[0] - paddings[0], 0))
|
|
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], L))
|
|
x_masked = x[:, :, r_start:r_end]
|
|
|
|
field_size = (r_end - r_start) \
|
|
if (exclusive or adaptive) else (ksize[0])
|
|
if data_type == np.int8 or data_type == np.uint8:
|
|
out[:, :, i] = (np.rint(
|
|
np.sum(x_masked, axis=(2, 3)) / field_size)).astype(data_type)
|
|
else:
|
|
out[:, :, i] = (np.sum(x_masked, axis=(2)) /
|
|
field_size).astype(data_type)
|
|
return out
|
|
|
|
|
|
class TestPool1d_API(unittest.TestCase):
|
|
def setUp(self):
|
|
np.random.seed(123)
|
|
self.places = [fluid.CPUPlace()]
|
|
if core.is_compiled_with_cuda():
|
|
self.places.append(fluid.CUDAPlace(0))
|
|
|
|
def check_adaptive_avg_dygraph_results(self, place):
|
|
with fluid.dygraph.guard(place):
|
|
input_np = np.random.random([2, 3, 32]).astype("float32")
|
|
input = fluid.dygraph.to_variable(input_np)
|
|
result = F.adaptive_avg_pool1d(input, output_size=16)
|
|
result_np = avg_pool1D_forward_naive(
|
|
input_np, ksize=[16], strides=[0], paddings=[0], adaptive=True)
|
|
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
ada_max_pool1d_dg = paddle.nn.layer.AdaptiveAvgPool1d(
|
|
output_size=16)
|
|
result = ada_max_pool1d_dg(input)
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
result = paddle.nn.functional.common.interpolate(
|
|
input, mode="area", size=16)
|
|
self.assertTrue(np.allclose(result.numpy(), result_np))
|
|
|
|
def check_adaptive_avg_static_results(self, place):
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
|
|
result = F.adaptive_avg_pool1d(input, output_size=16)
|
|
|
|
input_np = np.random.random([2, 3, 32]).astype("float32")
|
|
result_np = avg_pool1D_forward_naive(
|
|
input_np, ksize=[16], strides=[2], paddings=[0], adaptive=True)
|
|
|
|
exe = fluid.Executor(place)
|
|
fetches = exe.run(fluid.default_main_program(),
|
|
feed={"input": input_np},
|
|
fetch_list=[result])
|
|
self.assertTrue(np.allclose(fetches[0], result_np))
|
|
|
|
def test_adaptive_avg_pool1d(self):
|
|
for place in self.places:
|
|
self.check_adaptive_avg_dygraph_results(place)
|
|
self.check_adaptive_avg_static_results(place)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|