178 lines
5.8 KiB
178 lines
5.8 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
import paddle
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestInverseOp(OpTest):
|
|
def config(self):
|
|
self.matrix_shape = [10, 10]
|
|
self.dtype = "float64"
|
|
|
|
def setUp(self):
|
|
self.op_type = "inverse"
|
|
self.config()
|
|
|
|
np.random.seed(123)
|
|
mat = np.random.random(self.matrix_shape).astype(self.dtype)
|
|
inverse = np.linalg.inv(mat)
|
|
|
|
self.inputs = {'Input': mat}
|
|
self.outputs = {'Output': inverse}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_grad(self):
|
|
self.check_grad(['Input'], 'Output')
|
|
|
|
|
|
class TestInverseOpBatched(TestInverseOp):
|
|
def config(self):
|
|
self.matrix_shape = [8, 4, 4]
|
|
self.dtype = "float64"
|
|
|
|
|
|
class TestInverseOpLarge(TestInverseOp):
|
|
def config(self):
|
|
self.matrix_shape = [32, 32]
|
|
self.dtype = "float64"
|
|
|
|
def test_grad(self):
|
|
self.check_grad(['Input'], 'Output', max_relative_error=1e-6)
|
|
|
|
|
|
class TestInverseOpFP32(TestInverseOp):
|
|
def config(self):
|
|
self.matrix_shape = [10, 10]
|
|
self.dtype = "float32"
|
|
|
|
def test_grad(self):
|
|
self.check_grad(['Input'], 'Output', max_relative_error=1e-2)
|
|
|
|
|
|
class TestInverseOpBatchedFP32(TestInverseOpFP32):
|
|
def config(self):
|
|
self.matrix_shape = [8, 4, 4]
|
|
self.dtype = "float32"
|
|
|
|
|
|
class TestInverseOpLargeFP32(TestInverseOpFP32):
|
|
def config(self):
|
|
self.matrix_shape = [32, 32]
|
|
self.dtype = "float32"
|
|
|
|
|
|
class TestInverseAPI(unittest.TestCase):
|
|
def setUp(self):
|
|
np.random.seed(123)
|
|
self.places = [fluid.CPUPlace()]
|
|
if core.is_compiled_with_cuda():
|
|
self.places.append(fluid.CUDAPlace(0))
|
|
|
|
def check_static_result(self, place):
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
input = fluid.data(name="input", shape=[4, 4], dtype="float64")
|
|
result = paddle.inverse(x=input)
|
|
input_np = np.random.random([4, 4]).astype("float64")
|
|
result_np = np.linalg.inv(input_np)
|
|
|
|
exe = fluid.Executor(place)
|
|
fetches = exe.run(fluid.default_main_program(),
|
|
feed={"input": input_np},
|
|
fetch_list=[result])
|
|
self.assertTrue(np.allclose(fetches[0], np.linalg.inv(input_np)))
|
|
|
|
def test_static(self):
|
|
for place in self.places:
|
|
self.check_static_result(place=place)
|
|
|
|
def test_dygraph(self):
|
|
for place in self.places:
|
|
with fluid.dygraph.guard(place):
|
|
input_np = np.random.random([4, 4]).astype("float64")
|
|
input = fluid.dygraph.to_variable(input_np)
|
|
result = paddle.inverse(input)
|
|
self.assertTrue(
|
|
np.allclose(result.numpy(), np.linalg.inv(input_np)))
|
|
|
|
|
|
class TestInverseAPIError(unittest.TestCase):
|
|
def test_errors(self):
|
|
input_np = np.random.random([4, 4]).astype("float64")
|
|
|
|
# input must be Variable.
|
|
self.assertRaises(TypeError, paddle.inverse, input_np)
|
|
|
|
# The data type of input must be float32 or float64.
|
|
for dtype in ["bool", "int32", "int64", "float16"]:
|
|
input = fluid.data(name='input_' + dtype, shape=[4, 4], dtype=dtype)
|
|
self.assertRaises(TypeError, paddle.inverse, input)
|
|
|
|
# When out is set, the data type must be the same as input.
|
|
input = fluid.data(name='input_1', shape=[4, 4], dtype="float32")
|
|
out = fluid.data(name='output', shape=[4, 4], dtype="float64")
|
|
self.assertRaises(TypeError, paddle.inverse, input, out)
|
|
|
|
# The number of dimensions of input must be >= 2.
|
|
input = fluid.data(name='input_2', shape=[4], dtype="float32")
|
|
self.assertRaises(ValueError, paddle.inverse, input)
|
|
|
|
|
|
class TestInverseSingularAPI(unittest.TestCase):
|
|
def setUp(self):
|
|
self.places = [fluid.CPUPlace()]
|
|
if core.is_compiled_with_cuda():
|
|
self.places.append(fluid.CUDAPlace(0))
|
|
|
|
def check_static_result(self, place):
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
input = fluid.data(name="input", shape=[4, 4], dtype="float64")
|
|
result = paddle.inverse(x=input)
|
|
|
|
input_np = np.zeros([4, 4]).astype("float64")
|
|
|
|
exe = fluid.Executor(place)
|
|
try:
|
|
fetches = exe.run(fluid.default_main_program(),
|
|
feed={"input": input_np},
|
|
fetch_list=[result])
|
|
except fluid.core.EnforceNotMet as ex:
|
|
print("The mat is singular")
|
|
pass
|
|
|
|
def test_static(self):
|
|
for place in self.places:
|
|
self.check_static_result(place=place)
|
|
|
|
def test_dygraph(self):
|
|
for place in self.places:
|
|
with fluid.dygraph.guard(place):
|
|
input_np = np.ones([4, 4]).astype("float64")
|
|
input = fluid.dygraph.to_variable(input_np)
|
|
try:
|
|
result = paddle.inverse(input)
|
|
except fluid.core.EnforceNotMet as ex:
|
|
print("The mat is singular")
|
|
pass
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|