143 lines
4.8 KiB
143 lines
4.8 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import unittest
|
|
|
|
paddle.disable_static()
|
|
SEED = 2020
|
|
np.random.seed(SEED)
|
|
paddle.manual_seed(SEED)
|
|
|
|
|
|
class Generator(fluid.dygraph.Layer):
|
|
def __init__(self):
|
|
super(Generator, self).__init__()
|
|
self.conv1 = paddle.nn.Conv2d(3, 3, 3, padding=1)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = fluid.layers.tanh(x)
|
|
return x
|
|
|
|
|
|
class Discriminator(fluid.dygraph.Layer):
|
|
def __init__(self):
|
|
super(Discriminator, self).__init__()
|
|
self.convd = paddle.nn.Conv2d(6, 3, 1)
|
|
|
|
def forward(self, x):
|
|
x = self.convd(x)
|
|
return x
|
|
|
|
|
|
class TestRetainGraph(unittest.TestCase):
|
|
def cal_gradient_penalty(self,
|
|
netD,
|
|
real_data,
|
|
fake_data,
|
|
edge_data=None,
|
|
type='mixed',
|
|
constant=1.0,
|
|
lambda_gp=10.0):
|
|
if lambda_gp > 0.0:
|
|
if type == 'real':
|
|
interpolatesv = real_data
|
|
elif type == 'fake':
|
|
interpolatesv = fake_data
|
|
elif type == 'mixed':
|
|
alpha = paddle.rand((real_data.shape[0], 1))
|
|
alpha = paddle.expand(alpha, [
|
|
real_data.shape[0],
|
|
np.prod(real_data.shape) // real_data.shape[0]
|
|
])
|
|
alpha = paddle.reshape(alpha, real_data.shape)
|
|
interpolatesv = alpha * real_data + ((1 - alpha) * fake_data)
|
|
else:
|
|
raise NotImplementedError('{} not implemented'.format(type))
|
|
interpolatesv.stop_gradient = False
|
|
real_data.stop_gradient = True
|
|
fake_AB = paddle.concat((real_data.detach(), interpolatesv), 1)
|
|
disc_interpolates = netD(fake_AB)
|
|
|
|
outs = paddle.fill_constant(disc_interpolates.shape,
|
|
disc_interpolates.dtype, 1.0)
|
|
gradients = paddle.grad(
|
|
outputs=disc_interpolates,
|
|
inputs=fake_AB,
|
|
grad_outputs=outs,
|
|
create_graph=True,
|
|
retain_graph=True,
|
|
only_inputs=True)
|
|
|
|
gradients = paddle.reshape(gradients[0], [real_data.shape[0], -1])
|
|
|
|
gradient_penalty = paddle.reduce_mean((paddle.norm(
|
|
gradients + 1e-16, 2, 1) - constant)**
|
|
2) * lambda_gp # added eps
|
|
return gradient_penalty, gradients
|
|
else:
|
|
return 0.0, None
|
|
|
|
def run_retain(self, need_retain):
|
|
g = Generator()
|
|
d = Discriminator()
|
|
|
|
optim_g = paddle.optimizer.Adam(parameters=g.parameters())
|
|
optim_d = paddle.optimizer.Adam(parameters=d.parameters())
|
|
|
|
gan_criterion = paddle.nn.MSELoss()
|
|
l1_criterion = paddle.nn.L1Loss()
|
|
|
|
A = np.random.rand(2, 3, 32, 32).astype('float32')
|
|
B = np.random.rand(2, 3, 32, 32).astype('float32')
|
|
|
|
realA = paddle.to_variable(A)
|
|
realB = paddle.to_variable(B)
|
|
fakeB = g(realA)
|
|
|
|
optim_d.clear_gradients()
|
|
fake_AB = paddle.concat((realA, fakeB), 1)
|
|
G_pred_fake = d(fake_AB.detach())
|
|
|
|
false_target = paddle.fill_constant(G_pred_fake.shape, 'float32', 0.0)
|
|
|
|
G_gradient_penalty, _ = self.cal_gradient_penalty(
|
|
d, realA, fakeB, lambda_gp=10.0)
|
|
loss_d = gan_criterion(G_pred_fake, false_target) + G_gradient_penalty
|
|
|
|
loss_d.backward(retain_graph=need_retain)
|
|
optim_d.minimize(loss_d)
|
|
|
|
optim_g.clear_gradients()
|
|
fake_AB = paddle.concat((realA, fakeB), 1)
|
|
G_pred_fake = d(fake_AB)
|
|
true_target = paddle.fill_constant(G_pred_fake.shape, 'float32', 1.0)
|
|
loss_g = l1_criterion(fakeB, realB) + gan_criterion(G_pred_fake,
|
|
true_target)
|
|
|
|
loss_g.backward()
|
|
optim_g.minimize(loss_g)
|
|
|
|
def test_retain(self):
|
|
self.run_retain(need_retain=True)
|
|
self.assertRaises(
|
|
fluid.core.EnforceNotMet, self.run_retain, need_retain=False)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|