Paddle/python/paddle/fluid/tests/unittests/test_rnn_cell_api.py

621 lines
23 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid.framework import program_guard, Program
from paddle.fluid.executor import Executor
from paddle.fluid import framework
from paddle.fluid.layers.rnn import LSTMCell, GRUCell, RNNCell
from paddle.fluid.layers import rnn as dynamic_rnn
from paddle.fluid import contrib
from paddle.fluid.contrib.layers import basic_lstm
import paddle.fluid.layers.utils as utils
import numpy as np
class TestLSTMCellError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
batch_size, input_size, hidden_size = 4, 16, 16
inputs = fluid.data(
name='inputs', shape=[None, input_size], dtype='float32')
pre_hidden = fluid.data(
name='pre_hidden', shape=[None, hidden_size], dtype='float32')
pre_cell = fluid.data(
name='pre_cell', shape=[None, hidden_size], dtype='float32')
cell = LSTMCell(hidden_size)
def test_input_Variable():
np_input = np.random.random(
(batch_size, input_size)).astype("float32")
cell(np_input, [pre_hidden, pre_cell])
self.assertRaises(TypeError, test_input_Variable)
def test_pre_hidden_Variable():
np_pre_hidden = np.random.random(
(batch_size, hidden_size)).astype("float32")
cell(inputs, [np_pre_hidden, pre_cell])
self.assertRaises(TypeError, test_pre_hidden_Variable)
def test_pre_cell_Variable():
np_pre_cell = np.random.random(
(batch_size, input_size)).astype("float32")
cell(inputs, [pre_hidden, np_pre_cell])
self.assertRaises(TypeError, test_pre_cell_Variable)
def test_input_type():
error_inputs = fluid.data(
name='error_inputs',
shape=[None, input_size],
dtype='int32')
cell(error_inputs, [pre_hidden, pre_cell])
self.assertRaises(TypeError, test_input_type)
def test_pre_hidden_type():
error_pre_hidden = fluid.data(
name='error_pre_hidden',
shape=[None, hidden_size],
dtype='int32')
cell(inputs, [error_pre_hidden, pre_cell])
self.assertRaises(TypeError, test_pre_hidden_type)
def test_pre_cell_type():
error_pre_cell = fluid.data(
name='error_pre_cell',
shape=[None, hidden_size],
dtype='int32')
cell(inputs, [pre_hidden, error_pre_cell])
self.assertRaises(TypeError, test_pre_cell_type)
def test_dtype():
# the input type must be Variable
LSTMCell(hidden_size, dtype="int32")
self.assertRaises(TypeError, test_dtype)
class TestLSTMCell(unittest.TestCase):
def setUp(self):
self.batch_size = 4
self.input_size = 16
self.hidden_size = 16
def test_run(self):
inputs = fluid.data(
name='inputs', shape=[None, self.input_size], dtype='float32')
pre_hidden = fluid.data(
name='pre_hidden', shape=[None, self.hidden_size], dtype='float32')
pre_cell = fluid.data(
name='pre_cell', shape=[None, self.hidden_size], dtype='float32')
cell = LSTMCell(self.hidden_size)
lstm_hidden_new, lstm_states_new = cell(inputs, [pre_hidden, pre_cell])
lstm_unit = contrib.layers.rnn_impl.BasicLSTMUnit(
"basicLSTM", self.hidden_size, None, None, None, None, 1.0,
"float32")
lstm_hidden, lstm_cell = lstm_unit(inputs, pre_hidden, pre_cell)
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
inputs_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.input_size)).astype('float32')
pre_hidden_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32')
pre_cell_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32')
param_names = [[
"LSTMCell/BasicLSTMUnit_0.w_0", "basicLSTM/BasicLSTMUnit_0.w_0"
], ["LSTMCell/BasicLSTMUnit_0.b_0", "basicLSTM/BasicLSTMUnit_0.b_0"]]
for names in param_names:
param = np.array(fluid.global_scope().find_var(names[0]).get_tensor(
))
param = np.random.uniform(
-0.1, 0.1, size=param.shape).astype('float32')
fluid.global_scope().find_var(names[0]).get_tensor().set(param,
place)
fluid.global_scope().find_var(names[1]).get_tensor().set(param,
place)
out = exe.run(feed={
'inputs': inputs_np,
'pre_hidden': pre_hidden_np,
'pre_cell': pre_cell_np
},
fetch_list=[lstm_hidden_new, lstm_hidden])
self.assertTrue(np.allclose(out[0], out[1], rtol=1e-4, atol=0))
class TestGRUCellError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
batch_size, input_size, hidden_size = 4, 16, 16
inputs = fluid.data(
name='inputs', shape=[None, input_size], dtype='float32')
pre_hidden = layers.data(
name='pre_hidden',
shape=[None, hidden_size],
append_batch_size=False,
dtype='float32')
cell = GRUCell(hidden_size)
def test_input_Variable():
np_input = np.random.random(
(batch_size, input_size)).astype("float32")
cell(np_input, pre_hidden)
self.assertRaises(TypeError, test_input_Variable)
def test_pre_hidden_Variable():
np_pre_hidden = np.random.random(
(batch_size, hidden_size)).astype("float32")
cell(inputs, np_pre_hidden)
self.assertRaises(TypeError, test_pre_hidden_Variable)
def test_input_type():
error_inputs = fluid.data(
name='error_inputs',
shape=[None, input_size],
dtype='int32')
cell(error_inputs, pre_hidden)
self.assertRaises(TypeError, test_input_type)
def test_pre_hidden_type():
error_pre_hidden = fluid.data(
name='error_pre_hidden',
shape=[None, hidden_size],
dtype='int32')
cell(inputs, error_pre_hidden)
self.assertRaises(TypeError, test_pre_hidden_type)
def test_dtype():
# the input type must be Variable
GRUCell(hidden_size, dtype="int32")
self.assertRaises(TypeError, test_dtype)
class TestGRUCell(unittest.TestCase):
def setUp(self):
self.batch_size = 4
self.input_size = 16
self.hidden_size = 16
def test_run(self):
inputs = fluid.data(
name='inputs', shape=[None, self.input_size], dtype='float32')
pre_hidden = layers.data(
name='pre_hidden',
shape=[None, self.hidden_size],
append_batch_size=False,
dtype='float32')
cell = GRUCell(self.hidden_size)
gru_hidden_new, _ = cell(inputs, pre_hidden)
gru_unit = contrib.layers.rnn_impl.BasicGRUUnit(
"basicGRU", self.hidden_size, None, None, None, None, "float32")
gru_hidden = gru_unit(inputs, pre_hidden)
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
inputs_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.input_size)).astype('float32')
pre_hidden_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32')
param_names = [
["GRUCell/BasicGRUUnit_0.w_0", "basicGRU/BasicGRUUnit_0.w_0"],
["GRUCell/BasicGRUUnit_0.w_1", "basicGRU/BasicGRUUnit_0.w_1"],
["GRUCell/BasicGRUUnit_0.b_0", "basicGRU/BasicGRUUnit_0.b_0"],
["GRUCell/BasicGRUUnit_0.b_1", "basicGRU/BasicGRUUnit_0.b_1"]
]
for names in param_names:
param = np.array(fluid.global_scope().find_var(names[0]).get_tensor(
))
param = np.random.uniform(
-0.1, 0.1, size=param.shape).astype('float32')
fluid.global_scope().find_var(names[0]).get_tensor().set(param,
place)
fluid.global_scope().find_var(names[1]).get_tensor().set(param,
place)
out = exe.run(feed={'inputs': inputs_np,
'pre_hidden': pre_hidden_np},
fetch_list=[gru_hidden_new, gru_hidden])
self.assertTrue(np.allclose(out[0], out[1], rtol=1e-4, atol=0))
class TestRnnError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
batch_size = 4
input_size = 16
hidden_size = 16
seq_len = 4
inputs = fluid.data(
name='inputs', shape=[None, input_size], dtype='float32')
pre_hidden = layers.data(
name='pre_hidden',
shape=[None, hidden_size],
append_batch_size=False,
dtype='float32')
inputs_basic_lstm = fluid.data(
name='inputs_basic_lstm',
shape=[None, None, input_size],
dtype='float32')
sequence_length = fluid.data(
name="sequence_length", shape=[None], dtype='int64')
inputs_dynamic_rnn = layers.transpose(
inputs_basic_lstm, perm=[1, 0, 2])
cell = LSTMCell(hidden_size, name="LSTMCell_for_rnn")
np_inputs_dynamic_rnn = np.random.random(
(seq_len, batch_size, input_size)).astype("float32")
def test_input_Variable():
dynamic_rnn(
cell=cell,
inputs=np_inputs_dynamic_rnn,
sequence_length=sequence_length,
is_reverse=False)
self.assertRaises(TypeError, test_input_Variable)
def test_input_list():
dynamic_rnn(
cell=cell,
inputs=[np_inputs_dynamic_rnn],
sequence_length=sequence_length,
is_reverse=False)
self.assertRaises(TypeError, test_input_list)
def test_initial_states_type():
cell = GRUCell(hidden_size, name="GRUCell_for_rnn")
error_initial_states = np.random.random(
(batch_size, hidden_size)).astype("float32")
dynamic_rnn(
cell=cell,
inputs=inputs_dynamic_rnn,
initial_states=error_initial_states,
sequence_length=sequence_length,
is_reverse=False)
self.assertRaises(TypeError, test_initial_states_type)
def test_initial_states_list():
error_initial_states = [
np.random.random(
(batch_size, hidden_size)).astype("float32"),
np.random.random(
(batch_size, hidden_size)).astype("float32")
]
dynamic_rnn(
cell=cell,
inputs=inputs_dynamic_rnn,
initial_states=error_initial_states,
sequence_length=sequence_length,
is_reverse=False)
self.assertRaises(TypeError, test_initial_states_type)
def test_sequence_length_type():
np_sequence_length = np.random.random(
(batch_size)).astype("float32")
dynamic_rnn(
cell=cell,
inputs=inputs_dynamic_rnn,
sequence_length=np_sequence_length,
is_reverse=False)
self.assertRaises(TypeError, test_sequence_length_type)
class TestRnn(unittest.TestCase):
def setUp(self):
self.batch_size = 4
self.input_size = 16
self.hidden_size = 16
self.seq_len = 4
def test_run(self):
inputs_basic_lstm = fluid.data(
name='inputs_basic_lstm',
shape=[None, None, self.input_size],
dtype='float32')
sequence_length = fluid.data(
name="sequence_length", shape=[None], dtype='int64')
inputs_dynamic_rnn = layers.transpose(inputs_basic_lstm, perm=[1, 0, 2])
cell = LSTMCell(self.hidden_size, name="LSTMCell_for_rnn")
output, final_state = dynamic_rnn(
cell=cell,
inputs=inputs_dynamic_rnn,
sequence_length=sequence_length,
is_reverse=False)
output_new = layers.transpose(output, perm=[1, 0, 2])
rnn_out, last_hidden, last_cell = basic_lstm(inputs_basic_lstm, None, None, self.hidden_size, num_layers=1, \
batch_first = False, bidirectional=False, sequence_length=sequence_length, forget_bias = 1.0)
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
inputs_basic_lstm_np = np.random.uniform(
-0.1, 0.1,
(self.seq_len, self.batch_size, self.input_size)).astype('float32')
sequence_length_np = np.ones(
self.batch_size, dtype='int64') * self.seq_len
inputs_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.input_size)).astype('float32')
pre_hidden_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32')
pre_cell_np = np.random.uniform(
-0.1, 0.1, (self.batch_size, self.hidden_size)).astype('float32')
param_names = [[
"LSTMCell_for_rnn/BasicLSTMUnit_0.w_0",
"basic_lstm_layers_0/BasicLSTMUnit_0.w_0"
], [
"LSTMCell_for_rnn/BasicLSTMUnit_0.b_0",
"basic_lstm_layers_0/BasicLSTMUnit_0.b_0"
]]
for names in param_names:
param = np.array(fluid.global_scope().find_var(names[0]).get_tensor(
))
param = np.random.uniform(
-0.1, 0.1, size=param.shape).astype('float32')
fluid.global_scope().find_var(names[0]).get_tensor().set(param,
place)
fluid.global_scope().find_var(names[1]).get_tensor().set(param,
place)
out = exe.run(feed={
'inputs_basic_lstm': inputs_basic_lstm_np,
'sequence_length': sequence_length_np,
'inputs': inputs_np,
'pre_hidden': pre_hidden_np,
'pre_cell': pre_cell_np
},
fetch_list=[output_new, rnn_out])
self.assertTrue(np.allclose(out[0], out[1], rtol=1e-4))
class TestRnnUtil(unittest.TestCase):
"""
Test cases for rnn apis' utility methods for coverage.
"""
def test_case(self):
inputs = {"key1": 1, "key2": 2}
func = lambda x: x + 1
outputs = utils.map_structure(func, inputs)
utils.assert_same_structure(inputs, outputs)
try:
inputs["key3"] = 3
utils.assert_same_structure(inputs, outputs)
except ValueError as identifier:
pass
class EncoderCell(RNNCell):
"""Encoder Cell"""
def __init__(
self,
num_layers,
hidden_size,
dropout_prob=0.,
init_scale=0.1, ):
self.num_layers = num_layers
self.hidden_size = hidden_size
self.dropout_prob = dropout_prob
self.lstm_cells = []
for i in range(num_layers):
self.lstm_cells.append(LSTMCell(hidden_size))
def call(self, step_input, states):
new_states = []
for i in range(self.num_layers):
out, new_state = self.lstm_cells[i](step_input, states[i])
step_input = layers.dropout(
out,
self.dropout_prob, ) if self.dropout_prob else out
new_states.append(new_state)
return step_input, new_states
@property
def state_shape(self):
return [cell.state_shape for cell in self.lstm_cells]
class DecoderCell(RNNCell):
"""Decoder Cell"""
def __init__(self, num_layers, hidden_size, dropout_prob=0.):
self.num_layers = num_layers
self.hidden_size = hidden_size
self.dropout_prob = dropout_prob
self.lstm_cells = []
for i in range(num_layers):
self.lstm_cells.append(LSTMCell(hidden_size))
def call(self, step_input, states):
new_lstm_states = []
for i in range(self.num_layers):
out, new_lstm_state = self.lstm_cells[i](step_input, states[i])
step_input = layers.dropout(
out,
self.dropout_prob, ) if self.dropout_prob else out
new_lstm_states.append(new_lstm_state)
return step_input, new_lstm_states
def def_seq2seq_model(num_layers, hidden_size, dropout_prob, src_vocab_size,
trg_vocab_size):
"vanilla seq2seq model"
# data
source = fluid.data(name="src", shape=[None, None], dtype="int64")
source_length = fluid.data(
name="src_sequence_length", shape=[None], dtype="int64")
target = fluid.data(name="trg", shape=[None, None], dtype="int64")
target_length = fluid.data(
name="trg_sequence_length", shape=[None], dtype="int64")
label = fluid.data(name="label", shape=[None, None, 1], dtype="int64")
# embedding
src_emb = fluid.embedding(source, (src_vocab_size, hidden_size))
tar_emb = fluid.embedding(target, (src_vocab_size, hidden_size))
# encoder
enc_cell = EncoderCell(num_layers, hidden_size, dropout_prob)
enc_output, enc_final_state = dynamic_rnn(
cell=enc_cell, inputs=src_emb, sequence_length=source_length)
# decoder
dec_cell = DecoderCell(num_layers, hidden_size, dropout_prob)
dec_output, dec_final_state = dynamic_rnn(
cell=dec_cell, inputs=tar_emb, initial_states=enc_final_state)
logits = layers.fc(dec_output,
size=trg_vocab_size,
num_flatten_dims=len(dec_output.shape) - 1,
bias_attr=False)
# loss
loss = layers.softmax_with_cross_entropy(
logits=logits, label=label, soft_label=False)
loss = layers.unsqueeze(loss, axes=[2])
max_tar_seq_len = layers.shape(target)[1]
tar_mask = layers.sequence_mask(
target_length, maxlen=max_tar_seq_len, dtype="float32")
loss = loss * tar_mask
loss = layers.reduce_mean(loss, dim=[0])
loss = layers.reduce_sum(loss)
# optimizer
optimizer = fluid.optimizer.Adam(0.001)
optimizer.minimize(loss)
return loss
class TestSeq2SeqModel(unittest.TestCase):
"""
Test cases to confirm seq2seq api training correctly.
"""
def setUp(self):
np.random.seed(123)
self.model_hparams = {
"num_layers": 2,
"hidden_size": 128,
"dropout_prob": 0.1,
"src_vocab_size": 100,
"trg_vocab_size": 100
}
self.iter_num = iter_num = 2
self.batch_size = batch_size = 4
src_seq_len = 10
trg_seq_len = 12
self.data = {
"src": np.random.randint(
2, self.model_hparams["src_vocab_size"],
(iter_num * batch_size, src_seq_len)).astype("int64"),
"src_sequence_length": np.random.randint(
1, src_seq_len, (iter_num * batch_size, )).astype("int64"),
"trg": np.random.randint(
2, self.model_hparams["src_vocab_size"],
(iter_num * batch_size, trg_seq_len)).astype("int64"),
"trg_sequence_length": np.random.randint(
1, trg_seq_len, (iter_num * batch_size, )).astype("int64"),
"label": np.random.randint(
2, self.model_hparams["src_vocab_size"],
(iter_num * batch_size, trg_seq_len, 1)).astype("int64"),
}
place = core.CUDAPlace(0) if core.is_compiled_with_cuda(
) else core.CPUPlace()
self.exe = Executor(place)
def test_seq2seq_model(self):
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program, startup_program):
cost = def_seq2seq_model(**self.model_hparams)
self.exe.run(startup_program)
for iter_idx in range(self.iter_num):
cost_val = self.exe.run(feed={
"src": self.data["src"][iter_idx * self.batch_size:(
iter_idx + 1) * self.batch_size, :],
"src_sequence_length": self.data["src_sequence_length"]
[iter_idx * self.batch_size:(iter_idx + 1) *
self.batch_size],
"trg": self.data["trg"][iter_idx * self.batch_size:(
iter_idx + 1) * self.batch_size, :],
"trg_sequence_length": self.data["trg_sequence_length"][
iter_idx * self.batch_size:(iter_idx + 1
) * self.batch_size],
"label": self.data["label"][iter_idx * self.batch_size:(
iter_idx + 1) * self.batch_size]
},
fetch_list=[cost])[0]
print("iter_idx: %d, cost: %f" % (iter_idx, cost_val))
if __name__ == '__main__':
unittest.main()