Paddle/python/paddle/fluid/tests/unittests/test_softmax_op.py

366 lines
10 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
import paddle
import paddle.nn.functional as F
np.random.seed(10)
def stable_softmax(x):
"""Compute the softmax of vector x in a numerically stable way."""
# clip to shiftx, otherwise, when calc loss with
# log(exp(shiftx)), may get log(0)=INF
shiftx = (x - np.max(x)).clip(-64.)
exps = np.exp(shiftx)
return exps / np.sum(exps)
def ref_softmax(x, axis=None, dtype=None):
x_t = x.copy()
if dtype is not None:
x_t = x_t.astype(dtype)
if axis is None:
axis = -1
return np.apply_along_axis(stable_softmax, axis, x_t)
class TestSoftmaxOp(OpTest):
def get_x_shape(self):
return [10, 10]
def get_axis(self):
return -1
def setUp(self):
self.op_type = "softmax"
self.use_cudnn = False
self.use_mkldnn = False
self.dtype = np.float64
self.init_kernel_type()
self.shape = self.get_x_shape()
self.axis = self.get_axis()
np.random.seed(0)
x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
out = np.apply_along_axis(stable_softmax, self.axis, x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
self.attrs = {
'axis': self.axis,
'use_cudnn': self.use_cudnn,
'use_mkldnn': self.use_mkldnn
}
def init_kernel_type(self):
pass
def test_check_output(self):
# TODO(wangzhongpu): support mkldnn op in dygraph mode
if self.use_cudnn:
place = core.CUDAPlace(0)
self.check_output_with_place(
place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
else:
self.check_output(check_dygraph=(self.use_mkldnn == False))
def test_check_grad(self):
# TODO(wangzhongpu): support mkldnn op in dygraph mode
if self.use_cudnn or self.dtype == np.float16:
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_grad_with_place(
place, ["X"],
"Out",
max_relative_error=0.01,
check_dygraph=(self.use_mkldnn == False))
else:
self.check_grad(
["X"],
"Out",
max_relative_error=0.01,
check_dygraph=(self.use_mkldnn == False))
class TestSoftmaxOp2(TestSoftmaxOp):
def get_x_shape(self):
return [2, 3, 4, 5]
class TestSoftmaxOp3(TestSoftmaxOp):
def get_x_shape(self):
return [2, 3, 4, 5]
def get_axis(self):
return 0
class TestSoftmaxOp4(TestSoftmaxOp):
def get_x_shape(self):
return [2, 3, 4, 5]
def get_axis(self):
return 1
class TestSoftmaxOp5(TestSoftmaxOp):
def get_x_shape(self):
return [2, 3, 4, 5]
def get_axis(self):
return 2
class TestSoftmaxOp6(TestSoftmaxOp):
def get_x_shape(self):
return [2, 3, 4, 5]
def get_axis(self):
return 3
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSoftmaxCUDNNOp(TestSoftmaxOp):
def init_kernel_type(self):
self.use_cudnn = True
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSoftmaxCUDNNOp2(TestSoftmaxCUDNNOp):
def get_x_shape(self):
return [2, 3, 4, 5]
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSoftmaxCUDNNOp3(TestSoftmaxCUDNNOp):
def get_x_shape(self):
return [2, 3, 4, 5]
def get_axis(self):
return 0
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSoftmaxCUDNNOp4(TestSoftmaxCUDNNOp):
def get_x_shape(self):
return [2, 3, 4, 5]
def get_axis(self):
return 1
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSoftmaxCUDNNOp5(TestSoftmaxCUDNNOp):
def get_x_shape(self):
return [2, 3, 4, 5]
def get_axis(self):
return 2
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSoftmaxCUDNNOp6(TestSoftmaxCUDNNOp):
def get_x_shape(self):
return [2, 3, 4, 5]
def get_axis(self):
return 3
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSoftmaxCUDNNOp7(TestSoftmaxCUDNNOp):
def get_x_shape(self):
return [2, 3, 4, 5, 6]
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSoftmaxCUDNNOp8(TestSoftmaxCUDNNOp):
def get_x_shape(self):
return [2, 3, 4, 5, 6]
def get_axis(self):
return 0
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSoftmaxCUDNNOp9(TestSoftmaxCUDNNOp):
def get_x_shape(self):
return [2, 3, 4, 5, 6]
def get_axis(self):
return 1
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSoftmaxCUDNNOp10(TestSoftmaxCUDNNOp):
def get_x_shape(self):
return [2, 3, 4, 5, 6]
def get_axis(self):
return 2
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSoftmaxCUDNNOp11(TestSoftmaxCUDNNOp):
def get_x_shape(self):
return [2, 3, 4, 5, 6]
def get_axis(self):
return 3
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSoftmaxCUDNNOp12(TestSoftmaxCUDNNOp):
def get_x_shape(self):
return [2, 3, 4, 5, 6]
def get_axis(self):
return 4
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSoftmaxFP16Op(TestSoftmaxOp):
def init_kernel_type(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
# FIXME: If the x_shape is [10, 10], gradient failed.
def test_check_grad(self):
pass
@unittest.skip('disable TestSoftmaxFP16Op2')
class TestSoftmaxFP16Op2(TestSoftmaxOp):
def init_kernel_type(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
def get_x_shape(self):
return [2, 3, 4, 5]
def test_check_grad(self):
pass
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSoftmaxFP16CUDNNOp(TestSoftmaxOp):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSoftmaxFP16CUDNNOp2(TestSoftmaxFP16CUDNNOp):
def get_x_shape(self):
return [2, 3, 4, 5]
class TestSoftmaxAPI(unittest.TestCase):
def setUp(self):
self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
) else paddle.CPUPlace()
self.x_np = np.random.uniform(-1., 1., [2, 3, 4, 5]).astype('float32')
self.out_ref = np.apply_along_axis(stable_softmax, -1, self.x_np)
def test_static_check(self):
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.data('X', self.x_np.shape, 'float32')
out1 = F.softmax(x)
m = paddle.nn.Softmax()
out2 = m(x)
exe = paddle.static.Executor(self.place)
res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
for r in res:
self.assertEqual(np.allclose(out_ref, r), True)
def test_dygraph_check(self):
paddle.disable_static(self.place)
x = paddle.to_tensor(self.x_np)
out1 = F.softmax(x)
m = paddle.nn.Softmax()
out2 = m(x)
out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
for r in [out1, out2]:
self.assertEqual(np.allclose(out_ref, r.numpy()), True)
out1 = F.softmax(x, axis=0)
m = paddle.nn.Softmax(axis=0)
out2 = m(x)
out_ref = ref_softmax(self.x_np, axis=0, dtype=None)
for r in [out1, out2]:
self.assertEqual(np.allclose(out_ref, r.numpy()), True)
out = F.softmax(x, dtype=np.float64)
out_ref = ref_softmax(self.x_np, axis=-1, dtype=np.float64)
self.assertEqual(np.allclose(out_ref, out.numpy()), True)
paddle.enable_static()
def test_error(self):
with paddle.static.program_guard(paddle.static.Program()):
# The input type must be Variable.
self.assertRaises(TypeError, F.softmax, 1)
# The input dtype must be float16, float32, float64.
x_int32 = paddle.data(name='x_int32', shape=[2, 3], dtype='int32')
self.assertRaises(TypeError, F.softmax, x_int32)
# support the input dtype is float16
x_fp16 = paddle.data(name='x_fp16', shape=[2, 3], dtype='float16')
F.softmax(x_fp16)
if __name__ == "__main__":
unittest.main()