You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
291 lines
9.6 KiB
291 lines
9.6 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
/*
|
|
* This file contains the definition of a simple Inference API for Paddle.
|
|
*
|
|
* ATTENTION: It requires some C++11 features, for lower version C++ or C, we
|
|
* might release another API.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <cassert>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
|
|
// Data type.
|
|
enum PaddleDType {
|
|
FLOAT32,
|
|
INT64,
|
|
// TODO(Superjomn) support more data types if needed.
|
|
};
|
|
|
|
/*
|
|
* Memory menage for PaddleTensor.
|
|
* The PaddleBuf holds a buffer for data input or output. The memory can be
|
|
* allocated by user or by PaddleBuf itself, but in any case, the PaddleBuf
|
|
* should be reused for better performance.
|
|
*
|
|
* For user allocated memory, the following API can be used:
|
|
* - PaddleBuf(void* data, size_t length) to set an external memory by
|
|
* specifying
|
|
* the memory address and length.
|
|
* - Reset(void* data, size_t length) to reset the PaddleBuf with an external
|
|
* memory.
|
|
* ATTENTION, for user allocated memory, deallocation should be done by users
|
|
* externally after the program finished. The PaddleBuf won't do any allocation
|
|
* or deallocation.
|
|
*
|
|
* To have the PaddleBuf allocate and manage the memory:
|
|
* - PaddleBuf(size_t length) will allocate a memory of size `length`.
|
|
* - Resize(size_t length) resize the memory to no less than `length`, ATTENTION
|
|
* if the allocated memory is larger than `length`, nothing will done.
|
|
*/
|
|
class PaddleBuf {
|
|
public:
|
|
// PaddleBuf allocate memory internally, and manage it.
|
|
explicit PaddleBuf(size_t length)
|
|
: data_(new char[length]), length_(length), memory_owned_(true) {}
|
|
// Set external memory, the PaddleBuf won't manage it.
|
|
PaddleBuf(void* data, size_t length)
|
|
: data_(data), length_(length), memory_owned_{false} {}
|
|
// Copy only available when memory is managed externally.
|
|
explicit PaddleBuf(const PaddleBuf&);
|
|
|
|
// Resize the memory.
|
|
void Resize(size_t length);
|
|
// Reset to external memory, with address and length set.
|
|
void Reset(void* data, size_t length);
|
|
// Tell whether the buffer is empty.
|
|
bool empty() const { return length_ == 0; }
|
|
// Get the memory address.
|
|
void* data() const { return data_; }
|
|
// Get the memory length.
|
|
size_t length() const { return length_; }
|
|
|
|
~PaddleBuf() { Free(); }
|
|
PaddleBuf& operator=(const PaddleBuf&);
|
|
PaddleBuf& operator=(PaddleBuf&&);
|
|
PaddleBuf() = default;
|
|
PaddleBuf(PaddleBuf&& other);
|
|
|
|
private:
|
|
void Free();
|
|
void* data_{nullptr}; // pointer to the data memory.
|
|
size_t length_{0}; // number of memory bytes.
|
|
bool memory_owned_{true};
|
|
};
|
|
|
|
// Basic input and output data structure for PaddlePredictor.
|
|
struct PaddleTensor {
|
|
PaddleTensor() = default;
|
|
std::string name; // variable name.
|
|
std::vector<int> shape;
|
|
PaddleBuf data; // blob of data.
|
|
PaddleDType dtype;
|
|
std::vector<std::vector<size_t>> lod; // Tensor+LoD equals LoDTensor
|
|
};
|
|
|
|
enum class PaddlePlace { kUNK = -1, kCPU, kGPU };
|
|
// Tensor without copy, currently only supports AnalysisPredictor.
|
|
class ZeroCopyTensor {
|
|
public:
|
|
void Reshape(const std::vector<int>& shape);
|
|
|
|
// Get the memory in CPU or GPU with specific data type, should Reshape first
|
|
// to tell the data size.
|
|
// Once can directly call this data to feed the data.
|
|
// This is for write the input tensor.
|
|
template <typename T>
|
|
T* mutable_data(PaddlePlace place);
|
|
// Get the memory directly, will return the place and memory size by pointer.
|
|
// This is for reading the output tensor.
|
|
template <typename T>
|
|
T* data(PaddlePlace* place, int* size);
|
|
|
|
std::vector<int64_t> shape();
|
|
|
|
void SetLoD(const std::vector<std::vector<size_t>>& x);
|
|
std::vector<std::vector<size_t>> lod() const;
|
|
|
|
protected:
|
|
explicit ZeroCopyTensor(void* scope) : scope_{scope} {}
|
|
void SetName(const std::string& name) { name_ = name; }
|
|
void* FindTensor() const;
|
|
|
|
private:
|
|
std::string name_;
|
|
bool input_or_output_;
|
|
friend class AnalysisPredictor;
|
|
void* scope_{nullptr};
|
|
};
|
|
|
|
/*
|
|
* A simple Inference API for Paddle.
|
|
*/
|
|
class PaddlePredictor {
|
|
public:
|
|
struct Config;
|
|
PaddlePredictor() = default;
|
|
PaddlePredictor(const PaddlePredictor&) = delete;
|
|
PaddlePredictor& operator=(const PaddlePredictor&) = delete;
|
|
|
|
// Predict an record.
|
|
// The caller should be responsible for allocating and releasing the memory of
|
|
// `inputs`. `inputs` should be available until Run returns. Caller should be
|
|
// responsible for the output tensor's buffer, either allocated or passed from
|
|
// outside.
|
|
virtual bool Run(const std::vector<PaddleTensor>& inputs,
|
|
std::vector<PaddleTensor>* output_data,
|
|
int batch_size = -1) = 0;
|
|
|
|
// Zero copy input and output optimization.
|
|
// Get the input or output tensors, and operate on their memory directly,
|
|
// without copy.
|
|
virtual std::unique_ptr<ZeroCopyTensor> GetInputTensor(
|
|
const std::string& name) {
|
|
return nullptr;
|
|
}
|
|
virtual std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
|
|
const std::string& name) {
|
|
return nullptr;
|
|
}
|
|
virtual bool ZeroCopyRun() { return false; }
|
|
|
|
// Clone a predictor that share the model weights, the Cloned predictor should
|
|
// be thread-safe.
|
|
virtual std::unique_ptr<PaddlePredictor> Clone() = 0;
|
|
|
|
// Destroy the Predictor.
|
|
virtual ~PaddlePredictor() = default;
|
|
|
|
// The common configs for all the predictors.
|
|
struct Config {
|
|
std::string model_dir; // path to the model directory.
|
|
};
|
|
};
|
|
|
|
struct NativeConfig : public PaddlePredictor::Config {
|
|
// GPU related fields.
|
|
bool use_gpu{false};
|
|
int device{0};
|
|
float fraction_of_gpu_memory{-1.f}; // Change to a float in (0,1] if needed.
|
|
|
|
// Specify the exact path of program and parameter files.
|
|
std::string prog_file;
|
|
std::string param_file;
|
|
|
|
// Specify the variable's name of each input if input tensors don't follow the
|
|
// `feeds` and `fetches` of the phase `save_inference_model`.
|
|
bool specify_input_name{false};
|
|
};
|
|
|
|
// A factory to help create different predictors.
|
|
//
|
|
// Usage:
|
|
//
|
|
// NativeConfig config;
|
|
// ... // change the configs.
|
|
// auto native_predictor = CreatePaddlePredictor(config);
|
|
//
|
|
// FOR EXTENSION DEVELOPER:
|
|
// Different predictors are designated by config type. Similar configs can be
|
|
// merged, but there shouldn't be a huge config containing different fields for
|
|
// more than one kind of predictors.
|
|
template <typename ConfigT>
|
|
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
|
|
|
|
// NOTE The following APIs are too trivial, we will discard it in the following
|
|
// versions.
|
|
enum class PaddleEngineKind {
|
|
kNative = 0, // Use the native Fluid facility.
|
|
kAutoMixedTensorRT, // Automatically mix Fluid with TensorRT.
|
|
kAnalysis, // More optimization.
|
|
kAnakin // Use Anakin for inference, not mature yet.
|
|
};
|
|
|
|
template <typename ConfigT, PaddleEngineKind engine>
|
|
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
|
|
|
|
// ==
|
|
//
|
|
// -----------------------------------------------------------------------------------
|
|
// NOTE: The following APIs are not mature yet, we are still working on them.
|
|
|
|
namespace contrib {
|
|
|
|
// Accelerate GPU computation with TensorRT engine.
|
|
struct MixedRTConfig : public NativeConfig {
|
|
// Determine whether a subgraph will be executed by TRT.
|
|
int min_subgraph_size{1};
|
|
// While TensorRT allows an engine optimized for a given max batch size
|
|
// to run at any smaller size, the performance for those smaller
|
|
// sizes may not be as well-optimized. Therefore, Max batch is best
|
|
// equivalent to the runtime batch size.
|
|
int max_batch_size{1};
|
|
// For workspace_size, refer it from here:
|
|
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
|
|
int workspace_size{1 << 30};
|
|
// We transform the Ops that can be converted into TRT layer in the model,
|
|
// and aggregate these Ops into subgraphs for TRT execution.
|
|
// We set this variable to control the minimum number of nodes in the
|
|
// subgraph, 3 as default value.
|
|
int minimum_subgraph_size = 3;
|
|
// Reserved configuration
|
|
// We just support "FP32" now, "FP16" and "INT8" will be supported.
|
|
std::string precision_mode = "FP32";
|
|
};
|
|
|
|
// NOTE WIP, not stable yet.
|
|
struct AnalysisConfig : public NativeConfig {
|
|
enum class IrPassMode {
|
|
kSystem, // Use system default passes, not customize.
|
|
kInclude, // Specify the passes in `ir_passes`.
|
|
kExclude // Specify the disabled passes in `ir_passes`.
|
|
};
|
|
|
|
// Determine whether to perform graph optimization.
|
|
bool enable_ir_optim = true;
|
|
// Manually determine the IR passes to run.
|
|
IrPassMode ir_mode{IrPassMode::kExclude};
|
|
// passes to be excluded/included
|
|
std::vector<std::string> ir_passes{"embedding_fc_lstm_fuse_pass"};
|
|
|
|
// NOT stable yet.
|
|
bool use_feed_fetch_ops{true};
|
|
|
|
// NOTE this is just for internal development, please not use it.
|
|
// NOT stable yet.
|
|
bool _use_mkldnn{false};
|
|
};
|
|
|
|
// Configurations for Anakin engine.
|
|
struct AnakinConfig : public PaddlePredictor::Config {
|
|
enum TargetType { NVGPU = 0, X86 };
|
|
int device;
|
|
std::string model_file;
|
|
int max_batch_size{-1};
|
|
TargetType target_type;
|
|
};
|
|
|
|
} // namespace contrib
|
|
|
|
int PaddleDtypeSize(PaddleDType dtype);
|
|
|
|
} // namespace paddle
|