You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							114 lines
						
					
					
						
							3.9 KiB
						
					
					
				
			
		
		
	
	
							114 lines
						
					
					
						
							3.9 KiB
						
					
					
				| # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from .layers import LayerOutput, mixed_layer, identity_projection, \
 | |
|     slope_intercept_layer, scaling_layer, repeat_layer
 | |
| from .attrs import is_compatible_with
 | |
| from .default_decorators import *
 | |
| import activations as act
 | |
| from paddle.trainer.config_parser import logger
 | |
| 
 | |
| __all__ = []
 | |
| 
 | |
| 
 | |
| def register_unary_math_op(op_name, act):
 | |
|     def op(input, name=None):
 | |
|         return mixed_layer(
 | |
|             input=[identity_projection(input=input)], name=name, act=act)
 | |
| 
 | |
|     op = wrap_name_default(op_name)(op)
 | |
|     op.__doc__ = type(act).__doc__
 | |
|     globals()[op_name] = op
 | |
|     __all__.append(op_name)
 | |
| 
 | |
| 
 | |
| register_unary_math_op('exp', act.ExpActivation())
 | |
| register_unary_math_op('log', act.LogActivation())
 | |
| register_unary_math_op('abs', act.AbsActivation())
 | |
| register_unary_math_op('sigmoid', act.SigmoidActivation())
 | |
| register_unary_math_op('tanh', act.TanhActivation())
 | |
| register_unary_math_op('square', act.SquareActivation())
 | |
| register_unary_math_op('relu', act.ReluActivation())
 | |
| register_unary_math_op('sqrt', act.SqrtActivation())
 | |
| register_unary_math_op('reciprocal', act.ReciprocalActivation())
 | |
| 
 | |
| 
 | |
| def add(layeroutput, other):
 | |
|     if is_compatible_with(other, float):
 | |
|         return slope_intercept_layer(input=layeroutput, intercept=other)
 | |
|     if not isinstance(other, LayerOutput):
 | |
|         logger.fatal("LayerOutput can only be added with"
 | |
|                      " another LayerOutput or a number")
 | |
|     if layeroutput.size == other.size:
 | |
|         return mixed_layer(input=[
 | |
|             identity_projection(input=layeroutput),
 | |
|             identity_projection(input=other)
 | |
|         ])
 | |
|     if other.size != 1 and layeroutput.size != 1:
 | |
|         logger.fatal("Two LayerOutput can be added only if they have equal size"
 | |
|                      " or one of their sizes is 1. sizes are %s and %s" %
 | |
|                      (layeroutput.size, other.size))
 | |
|     elif layeroutput.size == 1:
 | |
|         tmp = layeroutput
 | |
|         layeroutput = other
 | |
|         other = tmp
 | |
|     other = repeat_layer(other, layeroutput.size)
 | |
|     return mixed_layer(input=[
 | |
|         identity_projection(input=layeroutput), identity_projection(input=other)
 | |
|     ])
 | |
| 
 | |
| 
 | |
| LayerOutput.__radd__ = add
 | |
| LayerOutput.__add__ = add
 | |
| 
 | |
| 
 | |
| def sub(layeroutput, other):
 | |
|     if is_compatible_with(other, float):
 | |
|         return slope_intercept_layer(input=layeroutput, intercept=-other)
 | |
|     if not isinstance(other, LayerOutput):
 | |
|         logger.fatal("LayerOutput can only be subtracted with"
 | |
|                      " another Layeroutput or a number")
 | |
|     neg = slope_intercept_layer(input=other, slope=-1.0)
 | |
|     return add(layeroutput, neg)
 | |
| 
 | |
| 
 | |
| LayerOutput.__sub__ = sub
 | |
| 
 | |
| 
 | |
| def rsub(layeroutput, other):
 | |
|     neg = slope_intercept_layer(input=layeroutput, slope=-1.0)
 | |
|     return add(neg, other)
 | |
| 
 | |
| 
 | |
| LayerOutput.__rsub__ = rsub
 | |
| 
 | |
| 
 | |
| def mul(layeroutput, other):
 | |
|     if is_compatible_with(other, float):
 | |
|         return slope_intercept_layer(input=layeroutput, slope=other)
 | |
|     if not isinstance(other, LayerOutput):
 | |
|         logger.fatal("LayerOutput can only be multiplied with"
 | |
|                      " another Layeroutput or a number")
 | |
|     elif layeroutput.size == 1:
 | |
|         return scaling_layer(input=other, weight=layeroutput)
 | |
|     elif other.size == 1:
 | |
|         return scaling_layer(input=layeroutput, weight=other)
 | |
|     else:
 | |
|         logger.fatal("At least one of the operand of '*' must be a number"
 | |
|                      " or a LayerOutput with size=1")
 | |
| 
 | |
| 
 | |
| LayerOutput.__mul__ = mul
 | |
| LayerOutput.__rmul__ = mul
 |