You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/dygraph/amp/loss_scaler.py

247 lines
9.6 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from paddle.fluid import core
from paddle.fluid.dygraph import to_variable
from paddle.fluid.framework import _varbase_creator, _dygraph_tracer, dygraph_only
from paddle.fluid.data_feeder import check_type
from ...wrapped_decorator import signature_safe_contextmanager, wrap_decorator
import warnings
import numpy as np
__all__ = ['AmpScaler']
class AmpScaler(object):
"""
:api_attr: imperative
AmpScaler is used for Auto-Mixed-Precision training/inferring in imperative
mode. It controls the scaling of loss, helps avoiding numerical overflow.
The object of this class has two methods `scale()`, `minimize()`.
`scale()` is used to multiply the loss by a scale ratio.
`minimize()` is similar as `Optimizer.minimize()`, performs parameters updating.
Commonly, it is used together with `amp_guard` to achieve Auto-Mixed-Precision in
imperative mode.
Args:
enable(bool, optional): Enable loss scaling or not. Default is True.
init_loss_scaling (float, optional): The initial loss scaling factor. Default is 2**15.
incr_ratio(float, optional): The multiplier to use when increasing the loss
scaling. Default is 2.0.
decr_ratio(float, optional): The less-than-one-multiplier to use when decreasing
the loss scaling. Default is 0.5.
incr_every_n_steps(int, optional): Increases loss scaling every n consecutive
steps with finite gradients. Default is 1000.
decr_every_n_nan_or_inf(int, optional): Decreases loss scaling every n
accumulated steps with nan or inf gradients. Default is 2.
use_dynamic_loss_scaling(bool, optional): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.
Returns:
An AmpScaler object.
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
with fluid.dygraph.guard():
model = fluid.dygraph.Conv2D(3, 2, 3)
optimizer = fluid.optimizer.SGDOptimizer(
learning_rate=0.01, parameter_list=model.parameters())
scaler = fluid.dygraph.AmpScaler(init_loss_scaling=1024)
data = fluid.dygraph.to_variable(data)
with fluid.dygraph.amp_guard():
conv = model(data)
loss = fluid.layers.reduce_mean(conv)
scaled = scaler.scale(loss)
scaled.backward()
scaler.minimize(optimizer, scaled)
"""
@dygraph_only
def __init__(self,
enable=True,
init_loss_scaling=2.**15,
incr_ratio=2.0,
decr_ratio=0.5,
incr_every_n_steps=1000,
decr_every_n_nan_or_inf=1,
use_dynamic_loss_scaling=True):
tracer = _dygraph_tracer()
if not tracer:
raise ValueError(
"current_tracer is None, maybe it is not in imperative mode.")
if enable and not tracer._expected_place.is_gpu_place():
warnings.warn(
'AmpScaler can only be enabled on CUDAPlace, current place is %s, so it makes no effect.'
% tracer._expected_place)
enable = False
self._enable = enable
if self._enable:
assert incr_ratio > 1.0, "The incr_ratio must be > 1.0."
assert decr_ratio < 1.0, "The decr_ratio must be < 1.0."
self._init_loss_scaling = init_loss_scaling
self._incr_ratio = incr_ratio
self._decr_ratio = decr_ratio
self._incr_every_n_steps = incr_every_n_steps
self._decr_every_n_nan_or_inf = decr_every_n_nan_or_inf
self._incr_count = 0
self._decr_count = 0
self._use_dynamic_loss_scaling = use_dynamic_loss_scaling
self._found_inf = to_variable(np.array([0]).astype(np.bool))
self._scale = to_variable(
np.array([self._init_loss_scaling]).astype(np.float32))
self._cache_founf_inf = None
def scale(self, var):
"""
Multiplies a variable(Tensor) by the scale factor and returns scaled outputs.
If this instance of :class:`AmpScaler` is not enabled, output are returned unmodified.
Args:
var (Variable): The variable to scale.
Returns:
The scaled variable or original variable.
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
with fluid.dygraph.guard():
model = fluid.dygraph.Conv2D(3, 2, 3)
optimizer = fluid.optimizer.SGDOptimizer(
learning_rate=0.01, parameter_list=model.parameters())
scaler = fluid.dygraph.AmpScaler(init_loss_scaling=1024)
data = fluid.dygraph.to_variable(data)
with fluid.dygraph.amp_guard():
conv = model(data)
loss = fluid.layers.reduce_mean(conv)
scaled = scaler.scale(loss)
scaled.backward()
scaler.minimize(optimizer, scaled)
"""
check_type(var, "var", core.VarBase, 'AmpScaler.scale()')
if not self._enable:
return var
return var * self._scale
def minimize(self, optimizer, *args, **kwargs):
"""
This function is similar as `Optimizer.minimize()`, which performs parameters updating.
If the scaled gradients of parameters contains NAN or INF, the parameters updating is skipped.
Otherwise, it first unscales the scaled gradients of parameters, then updates the parameters.
Finally, the loss scaling ratio is updated.
Args:
optimizer(Optimizer): The optimizer used to update parameters.
args: Arguments, which will be forward to `optimizer.minimize()`.
kwargs: Keyword arguments, which will be forward to `Optimizer.minimize()`.
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
with fluid.dygraph.guard():
model = fluid.dygraph.Conv2D(3, 2, 3)
optimizer = fluid.optimizer.SGDOptimizer(
learning_rate=0.01, parameter_list=model.parameters())
scaler = fluid.dygraph.AmpScaler(init_loss_scaling=1024)
data = fluid.dygraph.to_variable(data)
with fluid.dygraph.amp_guard():
conv = model(data)
loss = fluid.layers.reduce_mean(conv)
scaled = scaler.scale(loss)
scaled.backward()
scaler.minimize(optimizer, scaled)
"""
if not self._enable:
return optimizer.minimize(*args, **kwargs)
# unscale the grad
self._unscale(optimizer)
optimize_ops, params_grads = (None, None)
if self._found_inf:
self._cache_founf_inf = True
else:
optimize_ops, params_grads = optimizer.minimize(*args, **kwargs)
self._cache_founf_inf = False
if self._use_dynamic_loss_scaling:
# uopdate the scale
self._update()
return optimize_ops, params_grads
def _unscale(self, optimizer):
if not self._enable:
return
inv_scale = 1.0 / self._scale
param_grads = [
param._grad_ivar() for param in optimizer._parameter_list
if param._grad_ivar() is not None
]
core.ops.amp_check_finite_and_scale(param_grads, inv_scale, param_grads,
self._found_inf)
def _update(self):
"""
Updates the loss_scaling.
"""
if not self._enable:
return
if self._cache_founf_inf:
self._incr_count = 0
self._decr_count = self._decr_count + 1
if self._decr_count == self._decr_every_n_nan_or_inf:
print(
'Found inf or nan, current scale is: {}, decrease to: {}*{}'.
format(
float(self._scale),
float(self._scale), float(self._decr_ratio)))
self._scale = self._scale * self._decr_ratio
self._decr_count = 0
else:
self._decr_count = 0
self._incr_count = self._incr_count + 1
if self._incr_count == self._incr_every_n_steps:
self._scale = self._scale * self._incr_ratio
self._incr_count = 0
return