You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/dygraph/varbase_patch_methods.py

272 lines
9.9 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from .. import framework
from .. import core
from ..framework import Variable, Parameter, ParamBase
from .base import switch_to_static_graph
import numpy as np
from .math_op_patch import monkey_patch_math_varbase
def monkey_patch_varbase():
@switch_to_static_graph
def _to_static_var(self, to_parameter=False, **kwargs):
"""
**Notes**:
**This API is ONLY available in Dygraph mode**
Transform a VarBase into static Variable with same attributes. It's a low level interface used
in dy2static and shall not be called directly.
Args:
to_parameter (bool): It takes effect only if the input a VarBase. If set True,
the VarBase will be converted into framework.Parameters. Otherwise, it will
be converted into framework.Variable. Default False.
Examples:
.. code-block:: python
import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
import numpy as np
data = np.ones([3, 1024], dtype='float32')
with fluid.dygraph.guard():
var_base = to_variable(data)
static_var = var_base._to_static_var()
"""
# Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph.
# It will fail. So, for propery in dygraph only, should not let it getattr(self, attr, None).
attr_not_need_keys = ['grad']
if isinstance(self, ParamBase):
attr_kwargs = self.__dict__.copy()
else:
attr_names = []
for name in dir(self):
if name not in attr_not_need_keys and not (
inspect.ismethod(getattr(self, name)) or
name.startswith('_')):
attr_names.append(name)
attr_kwargs = {name: getattr(self, name) for name in attr_names}
attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
for attr in attr_keys:
attr_kwargs[attr] = getattr(self, attr, None)
attr_kwargs.update(kwargs)
if to_parameter or isinstance(self, ParamBase):
del attr_kwargs['persistable']
static_var = Parameter(**attr_kwargs)
else:
static_var = Variable(**attr_kwargs)
return static_var
# TODO(jiabin): move this to cplusplus end if we find some performance issue on it
@framework.dygraph_only
def set_value(self, value):
"""
**Notes**:
**This API is ONLY available in Dygraph mode**
Set a new value for this Variable.
Args:
value (Variable|np.ndarray): the new value.
Examples:
.. code-block:: python
import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph import Linear
import numpy as np
data = np.ones([3, 1024], dtype='float32')
with fluid.dygraph.guard():
linear = fluid.dygraph.Linear(1024, 4)
t = to_variable(data)
linear(t) # call with default weight
custom_weight = np.random.randn(1024, 4).astype("float32")
linear.weight.set_value(custom_weight) # change existing weight
out = linear(t) # call with different weight
"""
assert isinstance(value, (np.ndarray, core.VarBase)), \
"Variable set_value function, arguments type only support Variable, numpy, VarBase"
value_np = value
if isinstance(value, core.VarBase):
value_np = value.numpy()
self_tensor_np = self.numpy()
assert self_tensor_np.shape == value_np.shape, \
"Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
self.name, self_tensor_np.shape, value_np.shape)
assert self_tensor_np.dtype == value_np.dtype, \
"Variable dtype not match, Variable [ {} ] need tensor with dtype {} but load tensor with dtype {}".format(
self.name, self_tensor_np.dtype, value_np.dtype)
self.value().get_tensor().set(value_np,
framework._current_expected_place())
@framework.dygraph_only
def backward(self, retain_graph=False):
"""
**Notes**:
**This API is ONLY available in Dygraph mode**
Run backward of current Graph which starts from current Tensor.
Args:
retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
:code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
Defaults to False.
Returns:
NoneType: None
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x = np.ones([2, 2], np.float32)
inputs = []
for _ in range(10):
tmp = paddle.to_tensor(x)
# if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
# there is no one need gradient on it.
tmp.stop_gradient=False
inputs.append(tmp)
ret = paddle.sums(inputs)
loss = paddle.reduce_sum(ret)
loss.backward()
"""
if framework.in_dygraph_mode():
self._run_backward(framework._dygraph_tracer(), retain_graph)
else:
raise ValueError(
"Variable.backward() is only available in DyGraph mode")
@framework.dygraph_only
def gradient(self):
"""
**Notes**:
**This API is ONLY available in Dygraph mode**
Get the Gradient of Current Variable
Returns:
ndarray: Numpy value of the gradient of current Variable
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
x = np.ones([2, 2], np.float32)
with fluid.dygraph.guard():
inputs2 = []
for _ in range(10):
tmp = fluid.dygraph.base.to_variable(x)
tmp.stop_gradient=False
inputs2.append(tmp)
ret2 = fluid.layers.sums(inputs2)
loss2 = fluid.layers.reduce_sum(ret2)
loss2.backward()
print(loss2.gradient())
"""
if self._grad_ivar() is None:
return None
new_ivar = self._grad_ivar()._copy_to(core.CPUPlace(), True)
if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
return (np.array(new_ivar.value().get_selected_rows().get_tensor()),
np.array(new_ivar.value().get_selected_rows().rows()))
else:
return np.array(new_ivar.value().get_tensor())
@property
def grad(self):
"""
The alias of gradient().
"""
return self.gradient()
def __str__(self):
"""
Convert a VarBase object to a readable string.
Returns(str): A readable string.
Examples:
.. code-block:: python
import paddle
paddle.disable_static()
x = paddle.rand([1, 5])
print(x)
# Variable: eager_tmp_0
# - place: CUDAPlace(0)
# - shape: [1, 5]
# - layout: NCHW
# - dtype: float
# - data: [0.645307 0.597973 0.732793 0.646921 0.540328]
paddle.enable_static()
"""
tensor = self.value().get_tensor()
if tensor._is_initialized():
return 'Tensor: %s\n%s' % (self.name, str(tensor))
else:
return 'Tensor: %s, not initialized' % (self.name)
@property
def block(self):
return framework.default_main_program().global_block()
def __nonzero__(self):
numel = np.prod(self.shape)
assert numel == 1, "When Variable is used as the condition of if/while , Variable can only contain one element."
tensor = self.value().get_tensor()
assert tensor._is_initialized(), "tensor not initialized"
return bool(np.all(tensor.__array__() > 0))
def __bool__(self):
return self.__nonzero__()
for method_name, method in (
("__bool__", __bool__), ("__nonzero__", __nonzero__),
("_to_static_var", _to_static_var), ("set_value", set_value),
("block", block), ("backward", backward), ("grad", grad),
("gradient", gradient), ("__str__", __str__), ("__repr__", __str__),
("__module__", "paddle"), ("__name__", "Tensor")):
setattr(core.VarBase, method_name, method)
# patch math methods for varbase
monkey_patch_math_varbase()