You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
272 lines
9.9 KiB
272 lines
9.9 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
from .. import framework
|
|
from .. import core
|
|
from ..framework import Variable, Parameter, ParamBase
|
|
from .base import switch_to_static_graph
|
|
import numpy as np
|
|
from .math_op_patch import monkey_patch_math_varbase
|
|
|
|
|
|
def monkey_patch_varbase():
|
|
@switch_to_static_graph
|
|
def _to_static_var(self, to_parameter=False, **kwargs):
|
|
"""
|
|
**Notes**:
|
|
**This API is ONLY available in Dygraph mode**
|
|
|
|
Transform a VarBase into static Variable with same attributes. It's a low level interface used
|
|
in dy2static and shall not be called directly.
|
|
|
|
Args:
|
|
to_parameter (bool): It takes effect only if the input a VarBase. If set True,
|
|
the VarBase will be converted into framework.Parameters. Otherwise, it will
|
|
be converted into framework.Variable. Default False.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid.dygraph.base import to_variable
|
|
import numpy as np
|
|
|
|
data = np.ones([3, 1024], dtype='float32')
|
|
with fluid.dygraph.guard():
|
|
var_base = to_variable(data)
|
|
static_var = var_base._to_static_var()
|
|
|
|
"""
|
|
|
|
# Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph.
|
|
# It will fail. So, for propery in dygraph only, should not let it getattr(self, attr, None).
|
|
attr_not_need_keys = ['grad']
|
|
if isinstance(self, ParamBase):
|
|
attr_kwargs = self.__dict__.copy()
|
|
else:
|
|
attr_names = []
|
|
for name in dir(self):
|
|
if name not in attr_not_need_keys and not (
|
|
inspect.ismethod(getattr(self, name)) or
|
|
name.startswith('_')):
|
|
attr_names.append(name)
|
|
attr_kwargs = {name: getattr(self, name) for name in attr_names}
|
|
|
|
attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
|
|
for attr in attr_keys:
|
|
attr_kwargs[attr] = getattr(self, attr, None)
|
|
|
|
attr_kwargs.update(kwargs)
|
|
|
|
if to_parameter or isinstance(self, ParamBase):
|
|
del attr_kwargs['persistable']
|
|
static_var = Parameter(**attr_kwargs)
|
|
else:
|
|
static_var = Variable(**attr_kwargs)
|
|
return static_var
|
|
|
|
# TODO(jiabin): move this to cplusplus end if we find some performance issue on it
|
|
@framework.dygraph_only
|
|
def set_value(self, value):
|
|
"""
|
|
**Notes**:
|
|
**This API is ONLY available in Dygraph mode**
|
|
|
|
Set a new value for this Variable.
|
|
|
|
Args:
|
|
value (Variable|np.ndarray): the new value.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid.dygraph.base import to_variable
|
|
from paddle.fluid.dygraph import Linear
|
|
import numpy as np
|
|
|
|
data = np.ones([3, 1024], dtype='float32')
|
|
with fluid.dygraph.guard():
|
|
linear = fluid.dygraph.Linear(1024, 4)
|
|
t = to_variable(data)
|
|
linear(t) # call with default weight
|
|
custom_weight = np.random.randn(1024, 4).astype("float32")
|
|
linear.weight.set_value(custom_weight) # change existing weight
|
|
out = linear(t) # call with different weight
|
|
|
|
"""
|
|
assert isinstance(value, (np.ndarray, core.VarBase)), \
|
|
"Variable set_value function, arguments type only support Variable, numpy, VarBase"
|
|
|
|
value_np = value
|
|
if isinstance(value, core.VarBase):
|
|
value_np = value.numpy()
|
|
|
|
self_tensor_np = self.numpy()
|
|
|
|
assert self_tensor_np.shape == value_np.shape, \
|
|
"Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
|
|
self.name, self_tensor_np.shape, value_np.shape)
|
|
|
|
assert self_tensor_np.dtype == value_np.dtype, \
|
|
"Variable dtype not match, Variable [ {} ] need tensor with dtype {} but load tensor with dtype {}".format(
|
|
self.name, self_tensor_np.dtype, value_np.dtype)
|
|
|
|
self.value().get_tensor().set(value_np,
|
|
framework._current_expected_place())
|
|
|
|
@framework.dygraph_only
|
|
def backward(self, retain_graph=False):
|
|
"""
|
|
**Notes**:
|
|
**This API is ONLY available in Dygraph mode**
|
|
|
|
Run backward of current Graph which starts from current Tensor.
|
|
|
|
Args:
|
|
retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
|
|
like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
|
|
:code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
|
|
Defaults to False.
|
|
|
|
Returns:
|
|
NoneType: None
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import numpy as np
|
|
import paddle
|
|
paddle.disable_static()
|
|
|
|
x = np.ones([2, 2], np.float32)
|
|
inputs = []
|
|
for _ in range(10):
|
|
tmp = paddle.to_tensor(x)
|
|
# if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
|
|
# there is no one need gradient on it.
|
|
tmp.stop_gradient=False
|
|
inputs.append(tmp)
|
|
ret = paddle.sums(inputs)
|
|
loss = paddle.reduce_sum(ret)
|
|
loss.backward()
|
|
|
|
"""
|
|
if framework.in_dygraph_mode():
|
|
self._run_backward(framework._dygraph_tracer(), retain_graph)
|
|
else:
|
|
raise ValueError(
|
|
"Variable.backward() is only available in DyGraph mode")
|
|
|
|
@framework.dygraph_only
|
|
def gradient(self):
|
|
"""
|
|
**Notes**:
|
|
**This API is ONLY available in Dygraph mode**
|
|
|
|
Get the Gradient of Current Variable
|
|
|
|
Returns:
|
|
ndarray: Numpy value of the gradient of current Variable
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle.fluid as fluid
|
|
import numpy as np
|
|
|
|
x = np.ones([2, 2], np.float32)
|
|
with fluid.dygraph.guard():
|
|
inputs2 = []
|
|
for _ in range(10):
|
|
tmp = fluid.dygraph.base.to_variable(x)
|
|
tmp.stop_gradient=False
|
|
inputs2.append(tmp)
|
|
ret2 = fluid.layers.sums(inputs2)
|
|
loss2 = fluid.layers.reduce_sum(ret2)
|
|
loss2.backward()
|
|
print(loss2.gradient())
|
|
|
|
"""
|
|
if self._grad_ivar() is None:
|
|
return None
|
|
|
|
new_ivar = self._grad_ivar()._copy_to(core.CPUPlace(), True)
|
|
if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
|
|
return (np.array(new_ivar.value().get_selected_rows().get_tensor()),
|
|
np.array(new_ivar.value().get_selected_rows().rows()))
|
|
else:
|
|
return np.array(new_ivar.value().get_tensor())
|
|
|
|
@property
|
|
def grad(self):
|
|
"""
|
|
The alias of gradient().
|
|
"""
|
|
|
|
return self.gradient()
|
|
|
|
def __str__(self):
|
|
"""
|
|
Convert a VarBase object to a readable string.
|
|
|
|
Returns(str): A readable string.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle
|
|
paddle.disable_static()
|
|
x = paddle.rand([1, 5])
|
|
print(x)
|
|
# Variable: eager_tmp_0
|
|
# - place: CUDAPlace(0)
|
|
# - shape: [1, 5]
|
|
# - layout: NCHW
|
|
# - dtype: float
|
|
# - data: [0.645307 0.597973 0.732793 0.646921 0.540328]
|
|
paddle.enable_static()
|
|
"""
|
|
tensor = self.value().get_tensor()
|
|
if tensor._is_initialized():
|
|
return 'Tensor: %s\n%s' % (self.name, str(tensor))
|
|
else:
|
|
return 'Tensor: %s, not initialized' % (self.name)
|
|
|
|
@property
|
|
def block(self):
|
|
return framework.default_main_program().global_block()
|
|
|
|
def __nonzero__(self):
|
|
numel = np.prod(self.shape)
|
|
assert numel == 1, "When Variable is used as the condition of if/while , Variable can only contain one element."
|
|
tensor = self.value().get_tensor()
|
|
assert tensor._is_initialized(), "tensor not initialized"
|
|
return bool(np.all(tensor.__array__() > 0))
|
|
|
|
def __bool__(self):
|
|
return self.__nonzero__()
|
|
|
|
for method_name, method in (
|
|
("__bool__", __bool__), ("__nonzero__", __nonzero__),
|
|
("_to_static_var", _to_static_var), ("set_value", set_value),
|
|
("block", block), ("backward", backward), ("grad", grad),
|
|
("gradient", gradient), ("__str__", __str__), ("__repr__", __str__),
|
|
("__module__", "paddle"), ("__name__", "Tensor")):
|
|
setattr(core.VarBase, method_name, method)
|
|
|
|
# patch math methods for varbase
|
|
monkey_patch_math_varbase()
|